A298608 Polynomials related to the Motzkin numbers for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.
1, 0, 1, 2, 1, 1, 2, 6, 2, 1, 6, 9, 12, 3, 1, 8, 30, 24, 20, 4, 1, 20, 50, 90, 50, 30, 5, 1, 30, 140, 180, 210, 90, 42, 6, 1, 70, 245, 560, 490, 420, 147, 56, 7, 1, 112, 630, 1120, 1680, 1120, 756, 224, 72, 8, 1
Offset: 0
Examples
The first few polynomials are: p0(x) = 1; p1(x) = 0 + x; p2(x) = 2 + x + x^2; p3(x) = 2 + 6*x + 2*x^2 + x^3; p4(x) = 6 + 9*x + 12*x^2 + 3*x^3 + x^4; p5(x) = 8 + 30*x + 24*x^2 + 20*x^3 + 4*x^4 + x^5; p6(x) = 20 + 50*x + 90*x^2 + 50*x^3 + 30*x^4 + 5*x^5 + x^6; p7(x) = 30 + 140*x + 180*x^2 + 210*x^3 + 90*x^4 + 42*x^5 + 6*x^6 + x^7; The triangle starts: [0][ 1] [1][ 0, 1] [2][ 2, 1, 1] [3][ 2, 6, 2, 1] [4][ 6, 9, 12, 3, 1] [5][ 8, 30, 24, 20, 4, 1] [6][ 20, 50, 90, 50, 30, 5, 1] [7][ 30, 140, 180, 210, 90, 42, 6, 1] [8][ 70, 245, 560, 490, 420, 147, 56, 7, 1] [9][112, 630, 1120, 1680, 1120, 756, 224, 72, 8, 1]
Programs
-
Maple
A298608Poly := n -> `if`(n=0, 1, binomial(2*n, n)*(hypergeom([-n, -n], [-n+1/2], 1/2-x/4) + ((n-1)/(n+1))*hypergeom([-n+1, -n-1], [-n+1/2], 1/2-x/4))): A298608Row := n -> op(PolynomialTools:-CoefficientList(simplify(A298608Poly(n)), x)): seq(A298608Row(n), n=0..9);
-
Mathematica
p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2] + GegenbauerC[n - 1, -n , -x/2] (n - 1) / n; Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten
Formula
The polynomials are defined by p(0, x) = 1 and for n >= 1 by p(n, x) = G(n,-n,-x/2) + G(n-1,-n,-x/2)*(n-1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial.
p(n, x) = binomial(2*n,n)*(hypergeom([-n,-n], [-n+1/2], 1/2-x/4) + ((n-1)/(n+1))*hypergeom([-n+1,-n-1], [-n+1/2], 1/2-x/4)) for n >= 1.
Comments