A298610 Triangle read by rows, the unsigned coefficients of G(n, n, x/2) where G(n,a,x) denotes the n-th Gegenbauer polynomial, T(n, k) for 0 <= k <= n.
1, 0, 1, 2, 0, 3, 0, 12, 0, 10, 10, 0, 60, 0, 35, 0, 105, 0, 280, 0, 126, 56, 0, 756, 0, 1260, 0, 462, 0, 840, 0, 4620, 0, 5544, 0, 1716, 330, 0, 7920, 0, 25740, 0, 24024, 0, 6435, 0, 6435, 0, 60060, 0, 135135, 0, 102960, 0, 24310
Offset: 0
Examples
[0] 1 [1] 0, 1 [2] 2, 0, 3 [3] 0, 12, 0, 10 [4] 10, 0, 60, 0, 35 [5] 0, 105, 0, 280, 0, 126 [6] 56, 0, 756, 0, 1260, 0, 462 [7] 0, 840, 0, 4620, 0, 5544, 0, 1716 [8] 330, 0, 7920, 0, 25740, 0, 24024, 0, 6435 [9] 0, 6435, 0, 60060, 0, 135135, 0, 102960, 0, 24310
Programs
-
Maple
with(orthopoly): seq(seq((-1)^iquo(n-k, 2)*coeff(G(n,n,x/2),x,k), k=0..n), n=0..9);
-
Mathematica
p[n_] := Binomial[3 n - 1, n] Hypergeometric2F1[-n, 3 n, n + 1/2, 1/2 - x/4]; Flatten[Table[(-1)^Floor[(n-k)/2] Coefficient[p[n], x, k], {n,0,9}, {k,0,n}]]
Formula
G(n, x) = binomial(3*n-1, n)*hypergeom([-n, 3*n], [n+1/2], 1/2 - x/4).