cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298610 Triangle read by rows, the unsigned coefficients of G(n, n, x/2) where G(n,a,x) denotes the n-th Gegenbauer polynomial, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 2, 0, 3, 0, 12, 0, 10, 10, 0, 60, 0, 35, 0, 105, 0, 280, 0, 126, 56, 0, 756, 0, 1260, 0, 462, 0, 840, 0, 4620, 0, 5544, 0, 1716, 330, 0, 7920, 0, 25740, 0, 24024, 0, 6435, 0, 6435, 0, 60060, 0, 135135, 0, 102960, 0, 24310
Offset: 0

Views

Author

Peter Luschny, Jan 25 2018

Keywords

Examples

			[0]   1
[1]   0,    1
[2]   2,    0,    3
[3]   0,   12,    0,    10
[4]  10,    0,   60,     0,    35
[5]   0,  105,    0,   280,     0,    126
[6]  56,    0,  756,     0,  1260,      0,   462
[7]   0,  840,    0,  4620,     0,   5544,     0,   1716
[8] 330,    0, 7920,     0, 25740,      0, 24024,      0, 6435
[9]   0, 6435,    0, 60060,     0, 135135,     0, 102960,    0,  24310
		

Crossrefs

T(2n, 0) = A165817(n). T(n,n) = A088218(n). Row sums are A213684.
Cf. A109187.

Programs

  • Maple
    with(orthopoly):
    seq(seq((-1)^iquo(n-k, 2)*coeff(G(n,n,x/2),x,k), k=0..n), n=0..9);
  • Mathematica
    p[n_] := Binomial[3 n - 1, n] Hypergeometric2F1[-n, 3 n, n + 1/2, 1/2 - x/4];
    Flatten[Table[(-1)^Floor[(n-k)/2] Coefficient[p[n], x, k], {n,0,9}, {k,0,n}]]

Formula

G(n, x) = binomial(3*n-1, n)*hypergeom([-n, 3*n], [n+1/2], 1/2 - x/4).