cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298639 Numbers k such that the digital sum of k and the digital root of k have the same parity.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114
Offset: 1

Views

Author

J. Stauduhar, Jan 26 2018

Keywords

Comments

Numbers k such that A113217(k) = A179081(k).
Complement of A298638.
Agrees with A039691 until a(65): A039691(65) = 109 is not in this sequence.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[Plus @@ IntegerDigits@n, 2] == Mod[Mod[n -1, 9] +1, 2]; fQ[0] = True; Select[ Range[0, 104], fQ] (* Robert G. Wilson v, Jan 26 2018 *)
  • PARI
    dr(n)=if(n, (n-1)%9+1);
    isok(n) = (sumdigits(n) % 2) == (dr(n) % 2); \\ Michel Marcus, Jan 26 2018
    
  • PARI
    is(n)=bittest(sumdigits(n)-(n-1)%9,0)||!n \\ M. F. Hasler, Jan 26 2018
  • Python
    #Digital sum of n.
    def ds(n):
      if n < 10:
        return n
      return n % 10 + ds(n//10)
    def A298639(term_count):
      seq = []
      m = 0
      n = 1
      while n <= term_count:
        s = ds(m)
        r = ((m - 1) % 9) + 1 if m else 0
        if s % 2 == r % 2:
          seq.append(m)
          n += 1
        m += 1
      return seq
    print(A298639(100))