A298639 Numbers k such that the digital sum of k and the digital root of k have the same parity.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114
Offset: 1
Links
- J. Stauduhar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_] := Mod[Plus @@ IntegerDigits@n, 2] == Mod[Mod[n -1, 9] +1, 2]; fQ[0] = True; Select[ Range[0, 104], fQ] (* Robert G. Wilson v, Jan 26 2018 *)
-
PARI
dr(n)=if(n, (n-1)%9+1); isok(n) = (sumdigits(n) % 2) == (dr(n) % 2); \\ Michel Marcus, Jan 26 2018
-
PARI
is(n)=bittest(sumdigits(n)-(n-1)%9,0)||!n \\ M. F. Hasler, Jan 26 2018
-
Python
#Digital sum of n. def ds(n): if n < 10: return n return n % 10 + ds(n//10) def A298639(term_count): seq = [] m = 0 n = 1 while n <= term_count: s = ds(m) r = ((m - 1) % 9) + 1 if m else 0 if s % 2 == r % 2: seq.append(m) n += 1 m += 1 return seq print(A298639(100))
Comments