cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298647 Number of Dyck paths of semilength n having maximal degree of asymmetry, namely n-1 for n>2 and 0 otherwise.

Original entry on oeis.org

1, 1, 2, 2, 2, 8, 16, 52, 134, 432, 1248, 4104, 12648, 42464, 136512, 466568, 1545566, 5361632, 18165184, 63804952, 219997832, 780895392, 2730730176, 9780049008, 34598622616, 124873507904, 446068180608, 1620786592416, 5837657948832, 21336295622016, 77395590570240
Offset: 0

Views

Author

Emeric Deutsch and Alois P. Heinz, Feb 21 2018

Keywords

Comments

The degree of asymmetry of a Dyck path is defined in the following manner: we label the steps of a Dyck path of length 2n, from left to right, by 1,2,..., n-1, n, n, n-1, ..., 2,1. The degree of asymmetry is defined to be the number of pairs of identically labeled steps that are not at the same level. Example: the Dyck path UDUUDD has degree of asymmetry 2. Indeed, the labels are 123321 and the steps labeled 2 are at different levels and those labeled 3 are also at different levels.

Examples

			a(1) = 1, counting UD; a(2) = 2 since both UDUD and UUDD have maximal degree of asymmetry 0; a(5) = 8 counting UDUUUUDDDD, UDUDUUUDDD, UDUUDDUUDD, UDUDUUDUDD, and their reflections in a vertical axis.
		

Crossrefs

Column k=1 of A341445 (for n>2).

Programs

  • Maple
    b:= proc(x, y, v) option remember; expand(
          `if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
          `if`(y=v+(j-i)/2, 1, z)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))
        end:
    a:= n-> lcoeff(add(b(n, j$2), j=0..n)):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<8, [1$2, 2$3, 8, 16, 52][n+1],
          (256*(n-4)*(n-5)*(n-8)*(147*n^5-1708*n^4+7165*n^3-12896*n^2+8882*n
          -1362)*a(n-6)-64*(294*n^7-6139*n^6+52088*n^5-227713*n^4+534530*n^3
          -630478*n^2+295718*n-24240)*a(n-5)-16*(3675*n^8-96943*n^7+1072857
          *n^6-6448749*n^5+22718880*n^4-46984656*n^3+53484228*n^2-28042052*n
          +3963360)*a(n-4)-24*(1470*n^7-30345*n^6+256611*n^5-1138707*n^4
          +2807363*n^3-3706740*n^2+2239444*n-369120)*a(n-3)+4*(n-2)*(1470
          *n^7-27958*n^6+211755*n^5-810763*n^4+1642737*n^3-1686751*n^2+790686
          *n-150480)*a(n-2)+2*(n-1)*(882*n^6-14357*n^5+89078*n^4-262023*n^3
          +370096*n^2-233344*n+64320)*a(n-1))/((147*n^5-2443*n^4+15467*n^3
          -46109*n^2+63736*n-32160)*(n-1)*n*(n+1)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, v_] := b[x, y, v] = Expand[
      If[Min[y, v, x - Max[y, v]]<0, 0, If[x==0, 1, Function[l, Sum[Sum[
      If[y == v+(j-i)/2, 1, z] b[x-1, y+i, v+j], {i, l}], {j, l}]][{-1, 1}]]]];
    a[n_] := With[{p = Sum[b[n, j, j], {j, 0, n}]}, Coefficient[p, z, Exponent[p, z]]];
    a /@ Range[0, 40] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)

Formula

a(n) = A298645(n,n-1) for n > 2.
a(n) ~ 2^(2*n + 3) / (Pi * n^3). - Vaclav Kotesovec, Mar 06 2018