cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298656 Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 13, 19, 40, 85, 173, 322, 635, 1325, 2806, 5877, 12293, 25318, 52348, 110032, 230666, 481721, 1008645, 2105418, 4397869, 9221888, 19306816, 40379476, 84574182, 176999321, 370432095, 776067635, 1625005774, 3401774504, 7125184125
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2018

Keywords

Comments

Column 4 of A298660.

Examples

			Some solutions for n=5
..0..1..1..0. .0..1..1..0. .0..0..1..1. .0..1..1..1. .0..1..0..1
..0..0..0..1. .0..0..0..0. .1..0..1..0. .0..0..0..0. .0..1..1..0
..0..0..0..1. .0..0..0..0. .1..1..1..0. .0..0..0..1. .0..1..1..1
..0..1..0..1. .1..0..1..0. .1..1..1..0. .1..0..0..1. .1..1..1..1
..1..1..0..0. .1..0..1..1. .1..0..0..1. .0..1..0..1. .0..0..0..1
		

Crossrefs

Cf. A298660.

Formula

Empirical: a(n) = 3*a(n-1) +a(n-3) -14*a(n-4) -a(n-5) +33*a(n-6) -58*a(n-7) +8*a(n-8) +31*a(n-9) +257*a(n-10) -83*a(n-11) -415*a(n-12) +258*a(n-13) +257*a(n-14) -701*a(n-15) -1280*a(n-16) +817*a(n-17) +2138*a(n-18) -1277*a(n-19) -1528*a(n-20) +3841*a(n-21) +4395*a(n-22) -4674*a(n-23) -3840*a(n-24) +6126*a(n-25) +1522*a(n-26) -10670*a(n-27) -7803*a(n-28) +11150*a(n-29) +1242*a(n-30) -18501*a(n-31) +5389*a(n-32) +19940*a(n-33) -6561*a(n-34) -14251*a(n-35) +20541*a(n-36) +18531*a(n-37) -24833*a(n-38) -10425*a(n-39) +29434*a(n-40) +13173*a(n-41) -23604*a(n-42) -9671*a(n-43) +14824*a(n-44) -2310*a(n-45) -14701*a(n-46) -6124*a(n-47) +4664*a(n-48) +2279*a(n-49) -4344*a(n-50) +3221*a(n-51) +5148*a(n-52) -1564*a(n-53) -1655*a(n-54) +410*a(n-55) -29*a(n-56) +385*a(n-57) +1679*a(n-58) +770*a(n-59) -1293*a(n-60) -895*a(n-61) +499*a(n-62) +423*a(n-63) -72*a(n-64) -174*a(n-65) -69*a(n-66) +20*a(n-67) +16*a(n-68) +10*a(n-69) +5*a(n-70) -2*a(n-71) -a(n-72) for n>73