cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A298656 Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 13, 19, 40, 85, 173, 322, 635, 1325, 2806, 5877, 12293, 25318, 52348, 110032, 230666, 481721, 1008645, 2105418, 4397869, 9221888, 19306816, 40379476, 84574182, 176999321, 370432095, 776067635, 1625005774, 3401774504, 7125184125
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2018

Keywords

Comments

Column 4 of A298660.

Examples

			Some solutions for n=5
..0..1..1..0. .0..1..1..0. .0..0..1..1. .0..1..1..1. .0..1..0..1
..0..0..0..1. .0..0..0..0. .1..0..1..0. .0..0..0..0. .0..1..1..0
..0..0..0..1. .0..0..0..0. .1..1..1..0. .0..0..0..1. .0..1..1..1
..0..1..0..1. .1..0..1..0. .1..1..1..0. .1..0..0..1. .1..1..1..1
..1..1..0..0. .1..0..1..1. .1..0..0..1. .0..1..0..1. .0..0..0..1
		

Crossrefs

Cf. A298660.

Formula

Empirical: a(n) = 3*a(n-1) +a(n-3) -14*a(n-4) -a(n-5) +33*a(n-6) -58*a(n-7) +8*a(n-8) +31*a(n-9) +257*a(n-10) -83*a(n-11) -415*a(n-12) +258*a(n-13) +257*a(n-14) -701*a(n-15) -1280*a(n-16) +817*a(n-17) +2138*a(n-18) -1277*a(n-19) -1528*a(n-20) +3841*a(n-21) +4395*a(n-22) -4674*a(n-23) -3840*a(n-24) +6126*a(n-25) +1522*a(n-26) -10670*a(n-27) -7803*a(n-28) +11150*a(n-29) +1242*a(n-30) -18501*a(n-31) +5389*a(n-32) +19940*a(n-33) -6561*a(n-34) -14251*a(n-35) +20541*a(n-36) +18531*a(n-37) -24833*a(n-38) -10425*a(n-39) +29434*a(n-40) +13173*a(n-41) -23604*a(n-42) -9671*a(n-43) +14824*a(n-44) -2310*a(n-45) -14701*a(n-46) -6124*a(n-47) +4664*a(n-48) +2279*a(n-49) -4344*a(n-50) +3221*a(n-51) +5148*a(n-52) -1564*a(n-53) -1655*a(n-54) +410*a(n-55) -29*a(n-56) +385*a(n-57) +1679*a(n-58) +770*a(n-59) -1293*a(n-60) -895*a(n-61) +499*a(n-62) +423*a(n-63) -72*a(n-64) -174*a(n-65) -69*a(n-66) +20*a(n-67) +16*a(n-68) +10*a(n-69) +5*a(n-70) -2*a(n-71) -a(n-72) for n>73

A298657 Number of nX5 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 23, 23, 85, 177, 431, 876, 2137, 5002, 11687, 27591, 64253, 150967, 353682, 830580, 1954490, 4575013, 10742553, 25221766, 59150366, 138829820, 325959550, 764905062, 1795278490, 4214144288, 9890202526, 23212413440, 54483362577
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2018

Keywords

Comments

Column 5 of A298660.

Examples

			Some solutions for n=5
..0..1..0..1..1. .0..0..0..1..0. .0..0..0..1..1. .0..1..1..1..0
..1..0..1..0..0. .1..0..0..0..1. .1..0..0..0..0. .1..0..0..0..1
..0..1..0..1..0. .1..0..0..0..0. .1..0..0..1..1. .1..0..0..1..0
..1..0..1..0..0. .1..0..1..0..0. .0..0..0..1..0. .0..0..0..0..1
..0..1..0..1..1. .0..1..0..1..0. .1..1..1..0..1. .1..1..1..1..0
		

Crossrefs

Cf. A298660.

A298658 Number of nX6 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 49, 34, 173, 431, 1116, 2562, 6711, 17405, 48462, 125671, 334571, 901387, 2398458, 6398293, 17158639, 45911441, 122885609, 329214517, 881849126, 2361859125, 6328533398, 16955926709, 45429854362, 121730159805, 326179436515
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2018

Keywords

Comments

Column 6 of A298660.

Examples

			Some solutions for n=5
..0..1..0..0..1..1. .0..1..0..1..1..0. .0..1..1..1..1..0. .0..1..0..0..1..0
..1..0..0..0..0..0. .1..0..1..0..0..1. .0..0..1..1..0..0. .1..0..1..1..1..0
..0..0..0..1..0..1. .1..0..0..0..1..0. .0..0..1..1..1..1. .0..0..1..1..1..0
..0..0..0..1..1..0. .1..0..0..0..0..1. .1..0..1..0..1..0. .0..0..1..0..1..0
..0..1..1..0..1..0. .1..0..1..1..1..0. .1..0..0..0..1..0. .0..1..1..0..1..1
		

Crossrefs

Cf. A298660.

A298659 Number of nX7 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 95, 63, 322, 876, 2562, 7964, 24801, 74358, 242072, 745571, 2349275, 7433849, 23406485, 73834463, 233339001, 735993576, 2324359169, 7339529089, 23174991985, 73178503209, 231090268648, 729735594047, 2304427312579, 7277098813048
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2018

Keywords

Comments

Column 7 of A298660.

Examples

			Some solutions for n=5
..0..1..1..0..0..0..1. .0..0..1..0..0..0..1. .0..1..0..1..0..0..1
..1..0..0..0..0..1..1. .1..1..0..0..0..1..1. .1..0..1..0..1..1..1
..1..0..0..0..0..0..0. .0..0..0..0..0..0..0. .1..0..0..0..1..1..1
..1..0..1..0..1..0..1. .1..0..1..0..1..0..1. .1..0..0..0..1..0..1
..0..0..1..0..1..0..1. .1..0..1..0..1..0..1. .0..0..0..1..1..0..0
		

Crossrefs

Cf. A298660.

A298655 Number of n X n 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 15, 40, 177, 1116, 7964, 89543, 1367704, 32451809, 1028816587
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2018

Keywords

Comments

Diagonal of A298660.

Examples

			Some solutions for n=5
..0..1..0..0..1. .0..0..0..0..0. .0..1..1..1..1. .0..0..0..0..1
..0..1..1..1..0. .1..1..1..1..1. .0..0..1..1..0. .1..1..1..1..1
..0..1..1..1..0. .0..0..0..0..0. .1..1..1..1..0. .0..1..1..0..0
..0..1..0..1..0. .1..1..1..1..1. .1..0..0..0..1. .0..1..1..1..1
..1..0..1..0..1. .0..0..0..0..0. .0..0..0..1..0. .1..1..1..0..0
		

Crossrefs

Cf. A298660.
Showing 1-5 of 5 results.