A298668 Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0
Examples
T(5,1) = 1: 12345. T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345. T(5,3) = 2: 124|3|5, 12|34|5. T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7. T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9. Triangle T(n,k) begins: 1; 0, 1; 0, 1; 0, 1, 1; 0, 1, 3; 0, 1, 7, 2; 0, 1, 15, 12; 0, 1, 31, 50, 6; 0, 1, 63, 180, 60; 0, 1, 127, 602, 390, 24; 0, 1, 255, 1932, 2100, 360; 0, 1, 511, 6050, 10206, 3360, 120; 0, 1, 1023, 18660, 46620, 25200, 2520; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wenqin Cao, Emma Yu Jin, and Zhicong Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Applied Mathematics (2019); see also author's copy
Crossrefs
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add( b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..14); # second Maple program: T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)): seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14); # third Maple program: T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1), `if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1))) end: seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
-
Mathematica
T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1], If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]]; Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)