cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298668 Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0

Views

Author

Alois P. Heinz, Jan 24 2018

Keywords

Examples

			T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1;
  0, 1,    1;
  0, 1,    3;
  0, 1,    7,     2;
  0, 1,   15,    12;
  0, 1,   31,    50,     6;
  0, 1,   63,   180,    60;
  0, 1,  127,   602,   390,    24;
  0, 1,  255,  1932,  2100,   360;
  0, 1,  511,  6050, 10206,  3360,  120;
  0, 1, 1023, 18660, 46620, 25200, 2520;
  ...
		

Crossrefs

Columns k=0-11 give (offsets may differ): A000007, A057427, A168604, A028243, A028244, A028245, A032180, A228909, A228910, A228911, A228912, A228913.
Row sums give A229046(n-1) for n>0.
T(2n+1,n+1) gives A000142.
T(2n,n) gives A001710(n+1).

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
          b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..14);
    # second Maple program:
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
    seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
          `if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
        end:
    seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
         If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
    Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)

Formula

T(n,k) = (k-1)! * Stirling2(n-k+1,k) for k>0, T(n,0) = A000007(n).
T(n,k) = Sum_{j=0..k-1} (-1)^j*C(k-1,j)*(k-j)^(n-k) for k>0, T(n,0) = A000007(n).
T(n,k) = (k-1)! * A136011(n,k) for n, k >= 1.
Sum_{j>=0} T(n+j,j) = A076726(n) = 2*A000670(n) = A000629(n) + A000007(n).