cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298673 Inverse matrix of A135494.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 26, 19, 6, 1, 236, 170, 55, 10, 1, 2752, 1966, 645, 125, 15, 1, 39208, 27860, 9226, 1855, 245, 21, 1, 660032, 467244, 155764, 32081, 4480, 434, 28, 1, 12818912, 9049584, 3031876, 635124, 92001, 9576, 714, 36, 1, 282137824, 198754016, 66845340, 14180440, 2108085, 230097, 18690, 1110, 45, 1
Offset: 1

Views

Author

Tom Copeland, Jan 24 2018

Keywords

Comments

Since this is the inverse matrix of A135494 with row polynomials q_n(t), first introduced in that entry by R. J. Mathar, and the row polynomials p_n(t) of this entry are a binomial Sheffer polynomial sequence, the row polynomials of the inverse pair are umbral compositional inverses, i.e., p_n(q.(t)) = q_n(p.(t)) = t^n. For example, p_3(q.(t)) = 4q_1(t) + 3q_2(t) + q_3(t) = 4t + 3(-t + t^2) + (-t -3t^2 +t^3) = t^3. In addition, both sequences possess the umbral convolution property (p.x) + p.(y))^n = p_n(x+y) with p_0(t) = 1.
This is the inverse of the Bell matrix generated by A153881; for the definition of the Bell matrix see the link. - Peter Luschny, Jan 26 2018

Examples

			Matrix begins as
     1;
     1;    1;
     4,    3,    1;
    26,   19,    6,    1;
   236,  170,   55,   10,    1;
  2752, 1966,  645,  125,   15,    1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428. Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0, 1, -1), 9): MatrixInverse(%); # Peter Luschny, Jan 26 2018
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, If[n == 0, 1, -1]], rows = 12] // Inverse;
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

E.g.f.: e^[p.(t)x] = e^[t*h(x)] = exp[t*[(x-1)/2 + T{ (1/2) * exp[(x-1)/2] }], where T is the tree function of A000169 related to the Lambert function. h(x) = sum(j=1,...) A000311(j) * x^j / j! = exp[xp.'(0)], so the first column of this entry's matrix is A000311(n) for n > 0 and the second column of the full matrix for p_n(t) to n >= 0. The compositional inverse of h(x) is h^(-1)(x) = 1 + 2x - e^x.
The lowering operator is L = h^(-1)(D) = 1 + 2D - e^D with D = d/dt, i.e., L p_n(t) = n * p_(n-1)(t). For example, L p_3(t) = (D - D^2! - D^3/3! - ...) (4t + 6t^ + t^3) = 3 (t + t^2) = 3 p_2(t).
The raising operator is R = t * 1/[d[h^(-1)(D)]/dD] = t * 1/[2 - e^D)] = t (1 + D + 3D^2/2! + 13D^3/3! + ...). The coefficients of R are A000670. For example, R p_2(t) = t (1 + D + 3D^2/2! + ...) (t + t^2) = 4t + 3t^2 + t^3 = p_3(t).
The row sums are A006351, or essentially 2*A000311.
Conjectures from Mikhail Kurkov, Mar 01 2025: (Start)
T(n,k) = Sum_{j=0..n-k} binomial(n+j-1, k-1)*A269939(n-k, j) for 1 <= k <= n.
T(n,k) = A(n-1,k,0) for n > 0, k > 0 where A(n,k,q) = A(n-1,k,q+1) + 2*(q+1)!*Sum_{j=0..q} A(n-1,k,j)/j! for n >= 0, k > 0, q >= 0 with A(0,k,q) = Stirling1(q+1,k) for k > 0, q >= 0 (see A379458). In other words, T(n,k) = Sum_{j=0}^{n-1} A379460(n-j-1,j)*Stirling1(j+1,k) for n > 0, k > 0.
Recursion for the n-th row (independently of other rows): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} b(j-1)*binomial(-k,j)*T(n,k+j-1)*(-1)^j for 1 <= k < n with T(n,n) = 1 where b(n) = 1 + 4*Sum_{i=1..n} A135148(i).
Recursion for the k-th column (independently of other columns): T(n,k) = 1/(n-k)*Sum_{j=2..n-k+1} c(j-1)*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 where c(n) = A000311(n+1) + (n-1)*A000311(n). (End)