cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091260 Denominator of sigma_3(n)/sigma_2(n).

Original entry on oeis.org

1, 5, 5, 21, 13, 25, 25, 17, 91, 65, 61, 15, 85, 125, 65, 11, 145, 455, 181, 13, 125, 305, 265, 85, 651, 425, 41, 525, 421, 325, 481, 455, 305, 725, 325, 1911, 685, 181, 425, 17, 841, 625, 925, 427, 169, 1325, 1105, 55, 817, 1085, 725, 255, 1405, 205, 793, 425, 181
Offset: 1

Views

Author

Labos Elemer, Feb 12 2004

Keywords

Comments

If n is an odd prime then a(n) = A001844((n-1)/2). - Robert Israel, Jan 26 2018

Crossrefs

Programs

  • Maple
    seq(denom(numtheory:-sigma[3](n)/numtheory:-sigma[2](n)),n=1..100); # Robert Israel, Jan 26 2018
  • Mathematica
    Denominator[Table[DivisorSigma[3,n]/DivisorSigma[2,n],{n,60}]] (* Harvey P. Dale, Nov 03 2011 *)
  • PARI
    a(n) = my(f = factor(n)); denominator(sigma(f, 3)/sigma(f, 2)); \\ Amiram Eldar, Dec 20 2024

A379814 a(n) = sigma_2(n) * sigma_3(n).

Original entry on oeis.org

1, 45, 280, 1533, 3276, 12600, 17200, 49725, 68887, 147420, 162504, 429240, 373660, 774000, 917280, 1596221, 1425060, 3099915, 2483320, 5022108, 4816000, 7312680, 6449040, 13923000, 10253901, 16814700, 16760800, 26367600, 20536380, 41277600, 28659904, 51117885
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Comments

See A379812 for more links and Ramanujan's general formula.

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{2, 3}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f, 2) * sigma(f, 3);}

Formula

a(n) = A001157(n) * A001158(n).
Multiplicative with a(p^e) = (p^(2*e+2)-1) * (p^(3*e+3)-1) / ((p^2-1) * (p^3-1)).
Dirichlet g.f.: zeta(s) * zeta(s-2) * zeta(s-3) * zeta(s-5) / zeta(2*s-5).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(3) * zeta(4) * zeta(6) / zeta(7) = Pi^10 * zeta(3) / (85050 * zeta(7)) = 1.31261826893951336264... .
Showing 1-2 of 2 results.