A298756 Least strong pseudoprime to base n.
2047, 121, 341, 781, 217, 25, 9, 91, 9, 133, 91, 85, 15, 1687, 15, 9, 25, 9, 21, 221, 21, 169, 25, 217, 9, 121, 9, 15, 49, 15, 25, 545, 33, 9, 35, 9, 39, 133, 39, 21, 451, 21, 9, 481, 9, 65, 49, 25, 49, 25, 51, 9, 55, 9, 55, 25, 57, 15, 481, 15, 9, 529, 9, 33
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- Eric Weisstein's World of Mathematics, Strong Pseudoprime
- Index entries for sequences related to pseudoprimes
Programs
-
Maple
filter:= proc(n,b) local d,s,r; if isprime(n) then return false fi; s:= padic:-ordp(n-1,2); d:= (n-1)/2^s; if b &^ d mod n = 1 then return true fi; for r from 0 to s-1 do if b &^ (d*2^r) + 1 mod n = 0 then return true fi od; false end proc: f:= proc(b) local n; for n from 9 by 2 do if filter(n,b) then return n fi od end proc: map(f, [$2..100]); # Robert Israel, Mar 27 2018
-
Mathematica
sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := Module[{ans=False},s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[ PowerMod[b, d, n] == 1, ans=True, Do[If[PowerMod[b, d*2^r, n] == n-1, ans=True], {r, 0, s-1}]];ans];leastSPP[b_] := Module[{k=3}, While[ !sppQ[k,b],k+=2];k]; Table[leastSPP[n],{n, 2, 100}] (* after Jean-François Alcover at A020229 *)
-
PARI
is_a001262(n, a)={ (bittest(n, 0) && !isprime(n) && n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ after M. F. Hasler in A001262 a(n) = forcomposite(c=1, , if(is_a001262(c, n), return(c))) \\ Felix Fröhlich, Mar 28 2018
Comments