A298818 a(n) is the binary XOR of all n-bit triangular numbers.
1, 3, 6, 5, 9, 62, 70, 204, 348, 586, 1770, 3582, 6974, 9046, 22486, 12225, 54977, 97140, 201076, 34728, 347048, 1031920, 2250480, 10857648, 24157360, 40826080, 112612576, 21772545, 130349313, 1060428174, 1126848910, 1106260993, 2017932289, 3773334644, 13412500596, 6378289192, 37614057512
Offset: 1
Examples
There are two 4-bit triangular numbers, namely 10 and 15; a(4) = (10 XOR 15) = 5.
Programs
-
PARI
a(n) = {my(x = 0); for (k=2^(n-1), 2^n-1, if (ispolygonal(k, 3), x = bitxor(x, k)); ); x; } \\ Michel Marcus, Feb 13 2018
-
Python
i = n = x = L = 1 while L < 47: i+=1 nextn = i*(i+1)//2 if (nextn ^ n) > n: print(x, end=', ') x = 0 prevL = L L = len(bin(nextn))-2 for j in range(prevL, L-1): print(0, end=', ') n = nextn x ^= n
Comments