A298890
Number of nX3 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 3, 1, 4, 4, 11, 26, 66, 171, 462, 1248, 3419, 9450, 26334, 73697, 206960, 582316, 1640549, 4625476, 13047636, 36816651, 103906694, 293290860, 827923703, 2337253142, 6598367806, 18628473233, 52592572696, 148482655256, 419208157101
Offset: 1
Some solutions for n=7
..0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..1..1. .0..0..0. .0..1..1
..0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..1. .1..0..1. .0..0..1
..1..1..1. .1..0..0. .0..0..0. .1..1..1. .1..0..1. .1..1..1. .1..0..1
..0..1..0. .1..0..1. .0..0..0. .1..1..1. .1..1..0. .0..0..1. .1..1..0
..0..0..0. .1..1..1. .1..1..1. .0..0..0. .1..0..1. .0..1..0. .0..0..0
..0..1..0. .1..0..1. .1..1..1. .0..0..0. .0..0..1. .1..1..0. .0..1..0
..1..1..1. .0..0..0. .1..1..1. .0..0..0. .0..1..1. .1..0..0. .1..1..1
A298891
Number of nX4 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 2, 4, 11, 31, 80, 229, 681, 1969, 5973, 18031, 54874, 167752, 513625, 1575095, 4835994, 14859480, 45674676, 140452387, 431987865, 1328865560, 4088283165, 12578581331, 38703117525, 119090222855, 366452309799, 1127630050984
Offset: 1
Some solutions for n=7
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..1..0. .0..1..0..1
..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..1. .1..0..0..1
..1..1..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..1
..1..0..0..1. .1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
A298892
Number of nX5 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 11, 4, 31, 219, 579, 1858, 8891, 34212, 128103, 538967, 2219296, 8764075, 36216096, 148454907, 602014960, 2469409541, 10115533795, 41307139499, 169152390705, 692711105743, 2833870255179, 11601723412009, 47502652641814
Offset: 1
Some solutions for n=7
..0..0..0..1..1. .0..0..1..0..0. .0..0..1..1..0. .0..0..1..1..1
..0..0..0..1..1. .0..1..1..1..0. .0..1..1..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..1..0..1..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..1..0..0. .0..0..1..1..1. .1..1..1..0..0
..0..0..0..0..0. .1..1..1..1..1. .0..0..1..1..1. .1..1..0..1..0
..0..1..0..0..0. .1..1..1..0..1. .0..0..1..1..1. .1..1..0..1..1
..1..1..0..0..0. .1..1..1..0..0. .0..0..1..1..1. .1..1..0..0..1
A298893
Number of nX6 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 13, 11, 80, 579, 2963, 12224, 72620, 426475, 2284203, 12768382, 72904621, 409673880, 2298677918, 13008113489, 73461302729, 414141245069, 2338885431088, 13210876247129, 74582366744334, 421146376787631, 2378532739728979
Offset: 1
Some solutions for n=7
..0..0..0..0..1..1. .0..0..1..0..0..1. .0..0..0..1..1..0. .0..0..0..1..1..1
..0..1..1..1..0..1. .0..1..1..0..1..1. .0..0..0..1..0..0. .0..0..0..1..1..1
..1..0..1..0..0..1. .0..1..0..0..0..0. .1..1..1..1..1..1. .1..1..1..1..1..1
..0..1..0..1..1..1. .1..0..0..0..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
..0..0..0..0..0..0. .0..1..0..0..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
..0..1..0..0..0..0. .0..1..1..0..1..1. .1..1..1..1..1..1. .0..0..1..1..1..1
..1..1..0..0..0..0. .0..0..1..0..0..1. .1..1..1..1..1..1. .0..0..1..1..1..1
A298894
Number of nX7 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 34, 26, 229, 1858, 12224, 74725, 547497, 4012035, 28805843, 209118279, 1537327380, 11240705948, 82185225848, 602873376262, 4421261929905, 32410993796867, 237712768537660, 1743828733781802, 12791372365817836
Offset: 1
Some solutions for n=7
..0..0..1..1..0..0..0. .0..0..0..1..1..1..1. .0..0..1..0..0..1..1
..0..1..0..0..1..1..0. .0..0..0..1..1..1..1. .0..1..1..0..0..1..1
..0..1..0..1..1..1..0. .1..1..1..1..1..1..1. .1..0..0..1..0..0..0
..0..1..0..1..0..0..0. .1..1..1..1..0..0..0. .1..1..1..1..0..0..0
..0..1..0..1..0..1..0. .1..1..1..1..0..0..0. .1..0..1..1..1..1..1
..1..0..0..1..0..1..1. .1..1..1..1..0..0..0. .1..0..0..1..1..1..1
..1..1..1..1..0..0..1. .1..1..1..1..0..0..0. .1..1..0..1..1..1..1
A298889
Number of n X n 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 1, 1, 11, 219, 2963, 74725, 5719782, 724538480, 145951109194
Offset: 1
Some solutions for n=7
..0..0..0..0..1..1..1. .0..0..0..1..1..1..0. .0..0..1..0..0..1..1
..0..1..1..0..1..1..1. .0..1..1..0..1..0..0. .1..0..1..1..0..0..1
..1..0..1..1..1..0..0. .1..0..0..1..1..1..0. .1..1..0..0..0..0..0
..1..0..0..0..1..1..0. .1..0..1..1..1..1..1. .0..0..0..0..1..1..0
..1..0..1..0..0..0..1. .0..1..1..1..0..0..1. .0..0..0..1..0..1..0
..1..0..1..1..1..1..0. .1..0..1..0..1..1..0. .0..0..0..1..0..0..1
..1..1..0..0..0..0..0. .1..1..0..1..0..0..0. .0..0..0..1..1..1..1
Showing 1-6 of 6 results.
Comments