cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298890 Number of nX3 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 1, 4, 4, 11, 26, 66, 171, 462, 1248, 3419, 9450, 26334, 73697, 206960, 582316, 1640549, 4625476, 13047636, 36816651, 103906694, 293290860, 827923703, 2337253142, 6598367806, 18628473233, 52592572696, 148482655256, 419208157101
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 3 of A298895.

Examples

			Some solutions for n=7
..0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..1..1. .0..0..0. .0..1..1
..0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..1. .1..0..1. .0..0..1
..1..1..1. .1..0..0. .0..0..0. .1..1..1. .1..0..1. .1..1..1. .1..0..1
..0..1..0. .1..0..1. .0..0..0. .1..1..1. .1..1..0. .0..0..1. .1..1..0
..0..0..0. .1..1..1. .1..1..1. .0..0..0. .1..0..1. .0..1..0. .0..0..0
..0..1..0. .1..0..1. .1..1..1. .0..0..0. .0..0..1. .1..1..0. .0..1..0
..1..1..1. .0..0..0. .1..1..1. .0..0..0. .0..1..1. .1..0..0. .1..1..1
		

Crossrefs

Cf. A298895.

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) -5*a(n-3) -10*a(n-4) +11*a(n-5) +15*a(n-6) +2*a(n-7) -5*a(n-8) -33*a(n-9) -20*a(n-10) +47*a(n-11) +36*a(n-12) +4*a(n-14) -12*a(n-15) -2*a(n-16) +2*a(n-17) for n>18

A298891 Number of nX4 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 2, 4, 11, 31, 80, 229, 681, 1969, 5973, 18031, 54874, 167752, 513625, 1575095, 4835994, 14859480, 45674676, 140452387, 431987865, 1328865560, 4088283165, 12578581331, 38703117525, 119090222855, 366452309799, 1127630050984
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 4 of A298895.

Examples

			Some solutions for n=7
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..1..0. .0..1..0..1
..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..1. .1..0..0..1
..1..1..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..1
..1..0..0..1. .1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
		

Crossrefs

Cf. A298895.

Formula

Empirical: a(n) = 6*a(n-1) -9*a(n-2) +5*a(n-3) -32*a(n-4) +38*a(n-5) +25*a(n-6) +98*a(n-7) -119*a(n-8) +40*a(n-9) -550*a(n-10) +580*a(n-11) -916*a(n-12) +830*a(n-13) +263*a(n-14) +83*a(n-15) +2328*a(n-16) -229*a(n-17) +503*a(n-18) -4047*a(n-19) -417*a(n-20) -3044*a(n-21) +2435*a(n-22) -11065*a(n-23) +3356*a(n-24) -5303*a(n-25) +1559*a(n-26) +14545*a(n-27) +32995*a(n-28) +22512*a(n-29) -15204*a(n-30) -12820*a(n-31) -31577*a(n-32) -21644*a(n-33) +3315*a(n-34) +18307*a(n-35) -24537*a(n-36) -14373*a(n-37) +11731*a(n-38) +26599*a(n-39) +15792*a(n-40) -11544*a(n-41) -3386*a(n-42) -4977*a(n-43) +5179*a(n-44) -2851*a(n-45) +4056*a(n-46) -977*a(n-47) +3855*a(n-48) -121*a(n-49) +305*a(n-50) -1567*a(n-51) -458*a(n-52) -273*a(n-53) +321*a(n-54) -8*a(n-55) +78*a(n-56) -20*a(n-57) -6*a(n-58) for n>59

A298892 Number of nX5 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 11, 4, 31, 219, 579, 1858, 8891, 34212, 128103, 538967, 2219296, 8764075, 36216096, 148454907, 602014960, 2469409541, 10115533795, 41307139499, 169152390705, 692711105743, 2833870255179, 11601723412009, 47502652641814
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 5 of A298895.

Examples

			Some solutions for n=7
..0..0..0..1..1. .0..0..1..0..0. .0..0..1..1..0. .0..0..1..1..1
..0..0..0..1..1. .0..1..1..1..0. .0..1..1..0..0. .0..0..1..1..1
..1..1..0..0..0. .0..1..0..1..0. .1..1..1..1..1. .0..0..1..1..1
..0..1..0..0..0. .0..0..1..0..0. .0..0..1..1..1. .1..1..1..0..0
..0..0..0..0..0. .1..1..1..1..1. .0..0..1..1..1. .1..1..0..1..0
..0..1..0..0..0. .1..1..1..0..1. .0..0..1..1..1. .1..1..0..1..1
..1..1..0..0..0. .1..1..1..0..0. .0..0..1..1..1. .1..1..0..0..1
		

Crossrefs

Cf. A298895.

A298893 Number of nX6 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 13, 11, 80, 579, 2963, 12224, 72620, 426475, 2284203, 12768382, 72904621, 409673880, 2298677918, 13008113489, 73461302729, 414141245069, 2338885431088, 13210876247129, 74582366744334, 421146376787631, 2378532739728979
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 6 of A298895.

Examples

			Some solutions for n=7
..0..0..0..0..1..1. .0..0..1..0..0..1. .0..0..0..1..1..0. .0..0..0..1..1..1
..0..1..1..1..0..1. .0..1..1..0..1..1. .0..0..0..1..0..0. .0..0..0..1..1..1
..1..0..1..0..0..1. .0..1..0..0..0..0. .1..1..1..1..1..1. .1..1..1..1..1..1
..0..1..0..1..1..1. .1..0..0..0..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
..0..0..0..0..0..0. .0..1..0..0..0..0. .1..1..1..1..1..1. .1..1..1..0..0..0
..0..1..0..0..0..0. .0..1..1..0..1..1. .1..1..1..1..1..1. .0..0..1..1..1..1
..1..1..0..0..0..0. .0..0..1..0..0..1. .1..1..1..1..1..1. .0..0..1..1..1..1
		

Crossrefs

Cf. A298895.

A298894 Number of nX7 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 34, 26, 229, 1858, 12224, 74725, 547497, 4012035, 28805843, 209118279, 1537327380, 11240705948, 82185225848, 602873376262, 4421261929905, 32410993796867, 237712768537660, 1743828733781802, 12791372365817836
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 7 of A298895.

Examples

			Some solutions for n=7
..0..0..1..1..0..0..0. .0..0..0..1..1..1..1. .0..0..1..0..0..1..1
..0..1..0..0..1..1..0. .0..0..0..1..1..1..1. .0..1..1..0..0..1..1
..0..1..0..1..1..1..0. .1..1..1..1..1..1..1. .1..0..0..1..0..0..0
..0..1..0..1..0..0..0. .1..1..1..1..0..0..0. .1..1..1..1..0..0..0
..0..1..0..1..0..1..0. .1..1..1..1..0..0..0. .1..0..1..1..1..1..1
..1..0..0..1..0..1..1. .1..1..1..1..0..0..0. .1..0..0..1..1..1..1
..1..1..1..1..0..0..1. .1..1..1..1..0..0..0. .1..1..0..1..1..1..1
		

Crossrefs

Cf. A298895.

A298889 Number of n X n 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 1, 11, 219, 2963, 74725, 5719782, 724538480, 145951109194
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Diagonal of A298895.

Examples

			Some solutions for n=7
..0..0..0..0..1..1..1. .0..0..0..1..1..1..0. .0..0..1..0..0..1..1
..0..1..1..0..1..1..1. .0..1..1..0..1..0..0. .1..0..1..1..0..0..1
..1..0..1..1..1..0..0. .1..0..0..1..1..1..0. .1..1..0..0..0..0..0
..1..0..0..0..1..1..0. .1..0..1..1..1..1..1. .0..0..0..0..1..1..0
..1..0..1..0..0..0..1. .0..1..1..1..0..0..1. .0..0..0..1..0..1..0
..1..0..1..1..1..1..0. .1..0..1..0..1..1..0. .0..0..0..1..0..0..1
..1..1..0..0..0..0..0. .1..1..0..1..0..0..0. .0..0..0..1..1..1..1
		

Crossrefs

Cf. A298895.
Showing 1-6 of 6 results.