A320350
Expansion of e.g.f. Product_{k>=1} (1 + log(1/(1 - x))^k).
Original entry on oeis.org
1, 1, 3, 20, 148, 1384, 15728, 207696, 3094152, 51423288, 945943512, 19083180192, 418550811600, 9907493349168, 251588827187280, 6820899616891008, 196645361557479552, 6007407711127690752, 193842462200078260224, 6586904673329133618432, 235079477736802622742528, 8790132360155070084076800
Offset: 0
-
seq(n!*coeff(series(mul((1 + log(1/(1 - x))^k),k=1..100),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 09 2019
-
nmax = 21; CoefficientList[Series[Product[(1 + Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] PartitionsQ[k] k!, {k, 0, n}], {n, 0, 21}]
A330388
Expansion of e.g.f. Sum_{k>=1} (-1)^(k + 1) * log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 0, 7, -37, 338, -2816, 28418, -340334, 5015080, -84244704, 1536606168, -29753884392, 609895549872, -13243687082016, 305507366834832, -7523621131117296, 198844500026698752, -5649686902983730560, 171839087043420258432, -5545292300345590210944
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(-1)^(k + 1) Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! Sum[Mod[d, 2] d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1 + Log[1 + x]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Dec 15 2019 *)
A307523
Expansion of e.g.f. Product_{k>=1} (1 + log(1 + x)^k)/(1 - log(1 + x)^k).
Original entry on oeis.org
1, 2, 6, 28, 124, 848, 5312, 40080, 367632, 3132096, 27731328, 474979008, 1130161728, 90279554688, 268809015168, 3005011325952, 473192066191104, -7913323872693504, 186235895195313408, 1357401816746159616, -181477915903332002304, 9552839425392612096000
Offset: 0
-
nmax = 21; CoefficientList[Series[Product[(1 + Log[1 + x]^k)/(1 - Log[1 + x]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k]) Log[1 + x]^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[1/EllipticTheta[4, 0, Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] Sum[PartitionsQ[j] PartitionsP[k - j], {j, 0, k}] k!, {k, 0, n}], {n, 0, 21}]
Showing 1-3 of 3 results.
Comments