A298908 Smallest composite k such that (n^k - 1)/(n - 1) == 1 (mod k) for n > 1.
341, 91, 4, 15, 6, 25, 4, 9, 10, 33, 4, 65, 14, 15, 4, 9, 6, 49, 4, 21, 22, 69, 4, 25, 9, 9, 4, 15, 6, 49, 4, 33, 34, 9, 4, 133, 38, 15, 4, 21, 6, 25, 4, 9, 46, 65, 4, 25, 10, 39, 4, 9, 6, 35, 4, 25, 58, 15, 4, 91, 9, 9, 4, 15, 6, 49, 4, 15, 10, 9, 4, 65, 15, 15, 4, 21, 6, 49, 4, 9
Offset: 2
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 2..10000
Programs
-
Mathematica
f[n_] := Block[{k = 4}, While[PrimeQ@k || Mod[(n^k -1)/(n -1), k] != 1, k++]; k]; Array[f, 80, 2] With[{r = Select[Range[4, 400], CompositeQ]}, Table[SelectFirst[r, Mod[(n^# - 1)/(n - 1), #] == 1 &], {n, 2, 81}]] (* Michael De Vlieger, Jan 28 2018 *)
Comments