A298909 Numbers m such that there are precisely 18 groups of order m.
156, 342, 444, 666, 732, 876, 930, 1164, 1308, 1314, 1830, 1884, 1962, 2172, 2286, 2316, 2748, 2892, 2934, 3258, 3324, 3582, 3675, 3756, 4044, 4125, 4188, 4422, 4476, 4530, 4764, 4878, 4908, 4970, 5050, 5052, 5196, 5430, 5445, 5481, 5484, 5526, 6330, 6492, 6822, 6924
Offset: 1
Keywords
Examples
For m = 156, the 18 groups are (C13 : C4) : C3, C4 x (C13 : C3), C13 x (C3 : C4), C3 x (C13 : C4), C39 : C4, C156, (C13 : C4) : C3, C2 x ((C13 : C3) : C2), C3 x (C13 : C4), C39 : C4, S3 x D26, C2 x C2 x (C13 : C3), C13 x A4, (C26 x C2) : C3, C6 x D26, C26 x S3, D156, C78 x C2 where C, D mean Cyclic, Dihedral groups of the stated order and S, A mean the Symmetric, Alternating groups of the stated degree. The symbols x and : mean direct and semidirect products respectively.
Links
- Jorge R. F. F. Lopes, Table of n, a(n) for n = 1..283
- H. U. Besche, B. Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
- Gordon Royle, Numbers of Small Groups
- Index entries for sequences related to groups
Crossrefs
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), this sequence (k=18), A298910 (k=19), A298911 (k=20).
Programs
-
GAP
Filtered([1..2015], n -> NumberSmallGroups(n) = 18);
-
Maple
with(GroupTheory): for n from 1 to 10^4 do if NumGroups(n) = 18 then print(n); fi; od;
Formula
Sequence is { m | A000001(m) = 18 }.