cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005872 Theta series of hexagonal close-packing with respect to octahedral hole.

Original entry on oeis.org

0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 18, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 24, 0, 0, 0, 0, 0, 24, 0, 6, 0, 0, 0, 36, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 6*q^3 + 6*q^9 + 6*q^11 + 12*q^15 + 6*q^17 + 12*q^23 + 18*q^27 + ... - _Michael Somos_, Jul 06 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.

Crossrefs

Cf. A298931.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 6 x^3 QPochhammer[ x^16]^2 QPochhammer[ x^18]^3 / (QPochhammer[ x^6] QPochhammer[ x^8]), {x, 0, n}]; (* Michael Somos, Jul 06 2018 *)
  • PARI
    {a(n) = my(A, m); if( n<3 || n%2==0, 0, m = n\2 - 1; A = x * O(x^m); 6 * polcoeff( eta(x^8 + A)^2 * eta(x^9 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)), m))}; /* Michael Somos, Jul 06 2018 */

Formula

a(2*n) = 0. a(2*n + 3) = 6*A298931(n). - Michael Somos, Jul 06 2018

A298932 Expansion of f(-x^3)^3 * phi(-x^12) / (f(-x) * chi(-x^4)) in powers of x where phi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 0, 3, 2, 4, 0, 4, 4, 6, 0, 5, 3, 6, 0, 6, 4, 4, 0, 8, 4, 6, 0, 9, 6, 6, 0, 6, 6, 12, 0, 8, 4, 12, 0, 8, 7, 8, 0, 9, 6, 8, 0, 12, 8, 6, 0, 8, 6, 14, 0, 12, 6, 12, 0, 8, 8, 12, 0, 13, 6, 12, 0, 18, 10, 8, 0, 8, 12, 12, 0, 16, 7, 14, 0, 12, 8, 12, 0, 16
Offset: 0

Views

Author

Michael Somos, Jan 29 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^6 + 4*x^8 + 4*x^9 + ...
G.f. = q + q^3 + 2*q^5 + 3*q^9 + 2*q^11 + 4*q^13 + 4*q^17 + 4*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 QPochhammer[ -x^4, x^4] EllipticTheta[ 4, 0, x^12] / QPochhammer[ x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^24 + A)), n))};

Formula

Expansion of q^(-1/2) * eta(q^3)^3 * eta(q^8) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [1, 1, -2, 2, 1, -2, 1, 1, -2, 1, 1, -3, 1, 1, -2, 1, 1, -2, 1, 2, -2, 1, 1, -3, ...].
a(4*n + 3) = 0. a(3*n + 2) = 2 * A213607(n). a(n) = A298931(3*n). a(2*n) = A298933(n).
Showing 1-2 of 2 results.