A298933 Expansion of f(x, x^2) * f(x, x^3) * f(x^2, x^4) in powers of x where f(, ) is Ramanujan's general theta function.
1, 2, 3, 4, 4, 6, 5, 6, 6, 4, 8, 6, 9, 6, 6, 12, 8, 12, 8, 8, 9, 8, 12, 6, 8, 14, 12, 12, 8, 12, 13, 12, 18, 8, 8, 12, 16, 14, 12, 12, 16, 12, 13, 14, 6, 20, 16, 18, 8, 10, 18, 16, 20, 12, 16, 16, 15, 20, 12, 18, 24, 14, 18, 8, 16, 18, 16, 22, 12, 12, 20, 24
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 3*x^2 + 4*x^3 + 4*x^4 + 6*x^5 + 5*x^6 + 6*x^7 + 6*x^8 + ... G.f. = q + 2*q^5 + 3*q^9 + 4*q^13 + 4*q^17 + 6*q^21 + 5*q^25 + 6*q^29 + ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A298932.
Programs
-
Maple
N:= 100: S:= series(JacobiTheta3(0,x)*JacobiTheta4(0,x^3)*JacobiTheta4(0,x^6)*expand(QDifferenceEquations:-QPochhammer(-x^2,x^2,floor(N/2)))^3, x, N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 29 2018
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2]^3, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^6 + A) / (eta(x + A)^2 * eta(x^12 + A)), n))};
Formula
Expansion of phi(x) * phi(-x^3) * phi(-x^6) / chi(-x^2)^3 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q^2)^2 * eta(q^3)^2 * eta(q^4) * eta(q^6) / (eta(q)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [2, 0, 0, -1, 2, -3, 2, -1, 0, 0, 2, -3, ...].
a(n) = A298932(2*n).
Comments