cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298933 Expansion of f(x, x^2) * f(x, x^3) * f(x^2, x^4) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 5, 6, 6, 4, 8, 6, 9, 6, 6, 12, 8, 12, 8, 8, 9, 8, 12, 6, 8, 14, 12, 12, 8, 12, 13, 12, 18, 8, 8, 12, 16, 14, 12, 12, 16, 12, 13, 14, 6, 20, 16, 18, 8, 10, 18, 16, 20, 12, 16, 16, 15, 20, 12, 18, 24, 14, 18, 8, 16, 18, 16, 22, 12, 12, 20, 24
Offset: 0

Views

Author

Michael Somos, Jan 29 2018

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 3*x^2 + 4*x^3 + 4*x^4 + 6*x^5 + 5*x^6 + 6*x^7 + 6*x^8 + ...
G.f. = q + 2*q^5 + 3*q^9 + 4*q^13 + 4*q^17 + 6*q^21 + 5*q^25 + 6*q^29 + ...
		

Crossrefs

Cf. A298932.

Programs

  • Maple
    N:= 100:
    S:= series(JacobiTheta3(0,x)*JacobiTheta4(0,x^3)*JacobiTheta4(0,x^6)*expand(QDifferenceEquations:-QPochhammer(-x^2,x^2,floor(N/2)))^3, x, N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 29 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^6] QPochhammer[ -x^2, x^2]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A) * eta(x^6 + A) / (eta(x + A)^2 * eta(x^12 + A)), n))};

Formula

Expansion of phi(x) * phi(-x^3) * phi(-x^6) / chi(-x^2)^3 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q^2)^2 * eta(q^3)^2 * eta(q^4) * eta(q^6) / (eta(q)^2 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [2, 0, 0, -1, 2, -3, 2, -1, 0, 0, 2, -3, ...].
a(n) = A298932(2*n).