cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298935 Number of partitions of n^3 into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 5, 8, 40, 96, 297, 1269, 3456, 12839, 46691, 153111, 577167, 2054576, 7602937, 29000337, 110645967, 418889453, 1580667760, 6058528796, 23121913246, 89793473393, 350029321425, 1359919742613, 5340642744919, 20948242218543, 82505892314268
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2018

Keywords

Examples

			a(5) = 5 because we have [121, 4], [100, 25], [100, 16, 9], [64, 36, 25] and [64, 36, 16, 9].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1 + x^k^2, {k, 1, Floor[n^(3/2) + 1]}], {x, 0, n^3}], {n, 0, 29}]

Formula

a(n) = [x^(n^3)] Product_{k>=1} (1 + x^(k^2)).
a(n) = A033461(A000578(n)).

A298936 Number of ordered ways of writing n^2 as a sum of n nonnegative cubes.

Original entry on oeis.org

1, 1, 0, 6, 6, 20, 120, 7, 1689, 6636, 36540, 64020, 963996, 2894892, 19555965, 176079995, 955611188, 6684303780, 42462792168, 292378003753, 1886275214112, 13384059605364, 87399249887334, 624073002367892, 5080120229014734, 37587589611771480
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2018

Keywords

Examples

			a(3) = 6 because we have [8, 1, 0], [8, 0, 1], [1, 8, 0], [1, 0, 8], [0, 8, 1] and [0, 1, 8].
		

Crossrefs

Programs

  • Maple
    f:= n -> coeff(add(x^(k^3),k=0..floor(n^(2/3)))^n,x,n^2):
    map(f, [$0..30]); # Robert Israel, Jan 29 2018
  • Mathematica
    Table[SeriesCoefficient[Sum[x^k^3, {k, 0, Floor[n^(2/3) + 1]}]^n, {x, 0, n^2}], {n, 0, 25}]

Formula

a(n) = [x^(n^2)] (Sum_{k>=0} x^(k^3))^n.

A298937 Number of ordered ways of writing n^2 as a sum of n positive cubes.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 9240, 34650, 1716, 48477, 551915, 6726720, 89973520, 102639744, 1824625081, 9915389400, 30143458884, 278196062760, 1995766236541, 6611689457736, 64547920386450, 236756174748626, 2315743488707806
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2018

Keywords

Examples

			a(7) = 7 because we have [8, 8, 8, 8, 8, 8, 1], [8, 8, 8, 8, 8, 1, 8], [8, 8, 8, 8, 1, 8, 8], [8, 8, 8, 1, 8, 8, 8], [8, 8, 1, 8, 8, 8, 8], [8, 1, 8, 8, 8, 8, 8] and [1, 8, 8, 8, 8, 8, 8].
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SeriesCoefficient[Sum[x^k^3, {k, 1, Floor[n^(2/3) + 1]}]^n, {x, 0, n^2}], {n, 1, 27}]]

Formula

a(n) = [x^(n^2)] (Sum_{k>=1} x^(k^3))^n.
Showing 1-3 of 3 results.