A298941 Number of permutations of the multiset of prime factors of n > 1 that are Lyndon words.
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 1, 3
Offset: 2
Keywords
Examples
The a(90) = 3 Lyndon permutations are {2,3,3,5}, {2,3,5,3}, {2,5,3,3}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..20000
Crossrefs
Programs
-
Maple
with(combinat): with(numtheory): g:= l-> (n-> `if`(n=0, 1, add(mobius(j)*multinomial(n/j, (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)): a:= n-> g(map(i-> i[2], ifactors(n)[2])): seq(a(n), n=2..150); # Alois P. Heinz, Feb 09 2018
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; Table[Length[Select[Permutations[primeMS[n]],LyndonQ]],{n,2,60}] (* Second program: *) multinomial[n_, k_List] := n!/Times @@ (k!); g[l_] := With[{n = Total[l]}, If[n == 0, 1, Sum[MoebiusMu[j] multinomial[ n/j, l/j], {j, Divisors[GCD @@ l]}]/n]]; a[n_] := g[FactorInteger[n][[All, 2]]]; a /@ Range[2, 150] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)