A298945 a(n) = F_{c-(5/c)} mod c^2, where c is the n-th composite number, F_i = A000045(i) and (5/c) is the Kronecker symbol.
2, 5, 34, 21, 55, 89, 37, 160, 98, 293, 365, 150, 101, 433, 25, 665, 696, 709, 440, 994, 883, 1090, 765, 1241, 230, 1511, 1355, 257, 805, 20, 1382, 289, 2275, 1525, 1414, 821, 1373, 1820, 685, 1504, 2177, 720, 3102, 1302, 1250, 190, 2425, 2178, 2832, 3935
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # to get a(1)..a(N) count:= 0: R:= NULL: for n from 4 while count < N do if not isprime(n) then count:= count+1; R:= R, combinat:-fibonacci(n - numtheory:-jacobi(5,n)) mod n^2; fi od: R; # Robert Israel, Feb 02 2018
-
Mathematica
composite[n_Integer] := FixedPoint[n + PrimePi@ # + 1 &, n + PrimePi@ n + 1] ; Array[With[{c = composite@ #}, Mod[Fibonacci[c - KroneckerSymbol[5, c]], c^2]] &, 50] (* Michael De Vlieger, Jan 31 2018, composite function by Robert G. Wilson v at A066277 *)
-
PARI
forcomposite(c=1, 200, print1(lift(Mod(fibonacci(c-kronecker(5, c)), c^2)), ", "))
Comments