A299024 Number of compositions of n whose standard factorization into Lyndon words has distinct strict compositions as factors.
1, 1, 3, 4, 7, 13, 21, 34, 58, 98, 158, 258, 421, 676, 1108, 1777, 2836, 4544, 7220, 11443, 18215, 28729, 45203, 71139, 111518, 174402, 272367, 424892, 660563, 1025717, 1590448, 2460346, 3800816, 5862640, 9026963, 13885425, 21321663, 32695098, 50073855
Offset: 1
Keywords
Examples
The a(5) = 7 compositions: (5) = (5) (41) = (4)*(1) (14) = (14) (32) = (3)*(2) (23) = (23) (131) = (13)*(1) (212) = (2)*(12) Not included: (311) = (3)*(1)*(1) (113) = (113) (221) = (2)*(2)*(1) (122) = (122) (2111) = (2)*(1)*(1)*(1) (1211) = (12)*(1)*(1) (1121) = (112)*(1) (1112) = (1112) (11111) = (1)*(1)*(1)*(1)*(1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
nn=50; ser=Product[(1+x^n)^Total[(Length[#]-1)!&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(N)={WeighT(Vec(sum(n=1, N-1, (n-1)!*x^(n*(n+1)/2)/prod(k=1, n, 1-x^k + O(x^N)))))} \\ Andrew Howroyd, Dec 01 2018
Formula
Weigh transform of A032153.