A299023 Number of compositions of n whose standard factorization into Lyndon words has all strict compositions as factors.
1, 2, 4, 7, 12, 23, 38, 66, 112, 193, 319, 539, 887, 1466, 2415, 3951, 6417, 10428, 16817, 27072, 43505, 69560, 110916, 176469, 279893, 442742, 698919, 1100898, 1729530, 2712134, 4244263, 6628174, 10332499, 16077835, 24972415, 38729239, 59958797, 92685287
Offset: 1
Keywords
Examples
The a(5) = 12 compositions: (5) = (5) (41) = (4)*(1) (14) = (14) (32) = (3)*(2) (23) = (23) (311) = (3)*(1)*(1) (131) = (13)*(1) (221) = (2)*(2)*(1) (212) = (2)*(12) (2111) = (2)*(1)*(1)*(1) (1211) = (12)*(1)*(1) (11111) = (1)*(1)*(1)*(1)*(1) Not included: (113) = (113) (122) = (122) (1121) = (112)*(1) (1112) = (1112)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
nn=50; ser=Product[1/(1-x^n)^Total[(Length[#]-1)!&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(N)={EulerT(Vec(sum(n=1, N-1, (n-1)!*x^(n*(n+1)/2)/prod(k=1, n, 1-x^k + O(x^N)))))} \\ Andrew Howroyd, Dec 01 2018
Formula
Euler transform of A032153.