A299027 Number of compositions of n whose standard factorization into Lyndon words has all distinct weakly increasing factors.
1, 1, 3, 5, 11, 20, 38, 69, 125, 225, 400, 708, 1244, 2176, 3779, 6532, 11229, 19223, 32745, 55555, 93875, 158025, 265038, 443009, 738026, 1225649, 2029305, 3350167, 5515384, 9055678, 14830076, 24226115, 39480306, 64190026, 104130753, 168556588, 272268482
Offset: 1
Keywords
Examples
The a(5) = 11 compositions: (5) = (5) (41) = (4)*(1) (14) = (14) (32) = (3)*(2) (23) = (23) (131) = (13)*(1) (113) = (113) (212) = (2)*(12) (122) = (122) (1121) = (112)*(1) (1112) = (1112) Not included: (311) = (3)*(1)*(1) (221) = (2)*(2)*(1) (2111) = (2)*(1)*(1)*(1) (1211) = (12)*(1)*(1) (11111) = (1)*(1)*(1)*(1)*(1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nn=50; ser=Product[(1+x^n)^(PartitionsP[n]-DivisorSigma[0,n]+1),{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={WeighT(vector(n, n, numbpart(n) - numdiv(n) + 1))} \\ Andrew Howroyd, Dec 01 2018
Formula
Weigh transform of A167934.