cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299038 Number A(n,k) of rooted trees with n nodes where each node has at most k children; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 4, 6, 1, 0, 1, 1, 1, 2, 4, 8, 11, 1, 0, 1, 1, 1, 2, 4, 9, 17, 23, 1, 0, 1, 1, 1, 2, 4, 9, 19, 39, 46, 1, 0, 1, 1, 1, 2, 4, 9, 20, 45, 89, 98, 1, 0, 1, 1, 1, 2, 4, 9, 20, 47, 106, 211, 207, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2018

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  1, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0, 1,   2,   2,   2,   2,   2,   2,   2,   2,   2, ...
  0, 1,   3,   4,   4,   4,   4,   4,   4,   4,   4, ...
  0, 1,   6,   8,   9,   9,   9,   9,   9,   9,   9, ...
  0, 1,  11,  17,  19,  20,  20,  20,  20,  20,  20, ...
  0, 1,  23,  39,  45,  47,  48,  48,  48,  48,  48, ...
  0, 1,  46,  89, 106, 112, 114, 115, 115, 115, 115, ...
  0, 1,  98, 211, 260, 277, 283, 285, 286, 286, 286, ...
  0, 1, 207, 507, 643, 693, 710, 716, 718, 719, 719, ...
		

Crossrefs

Main diagonal gives A000081 for n>0.
A(2n,n) gives A299039.
Cf. A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(n-1$2, k$2)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
    A[n_, k_] := If[n == 0, 1, b[n - 1, n - 1, k, k]];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, i, t, k): return 1 if n==0 else 0 if i<1 else sum([binomial(b(i-1, i-1, k, k)+j-1, j)*b(n-i*j, i-1, t-j, k) for j in range(min(t, n//i)+1)])
    def A(n, k): return 1 if n==0 else b(n-1, n-1, k, k)
    for d in range(15): print([A(n, d-n) for n in range(d+1)]) # Indranil Ghosh, Mar 02 2018, after Maple code

Formula

A(n,k) = Sum_{i=0..k} A244372(n,i) for n>0, A(0,k) = 1.