cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299042 G.f.: Sum_{n>=0} x^(n^2) * C(x^n)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 1, 2, 6, 14, 44, 132, 434, 1431, 4876, 16796, 58831, 208012, 743032, 2674449, 9695275, 35357670, 129646248, 477638700, 1767268056, 6564120510, 24466283816, 91482563640, 343059672747, 1289904147325, 4861946609464, 18367353073153, 69533551658952, 263747951750360, 1002242219329245, 3814986502092304, 14544636048921919, 55534064877060132, 212336130447600780
Offset: 0

Views

Author

Paul D. Hanna, Feb 16 2018

Keywords

Comments

Compare to: Sum{n>=0} Series_Reversion( x/(1 + x^n)^(1/n) )^(n^2) = Sum_{n>=0} x^(n^2)/(1 - x^n)^n, the g.f. of A143862.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 14*x^5 + 44*x^6 + 132*x^7 + 434*x^8 + 1431*x^9 + 4876*x^10 + 16796*x^11 + 58831*x^12 + ...
such that
A(x) = 1 + (1 - sqrt(1 - 4*x))/2 + (1 - sqrt(1 - 4*x^2))^2/2^2 + (1 - sqrt(1 - 4*x^3))^3/2^3 + (1 - sqrt(1 - 4*x^4))^4/2^4 + (1 - sqrt(1 - 4*x^5))^5/2^5 + (1 - sqrt(1 - 4*x^6))^6/2^6 + ...
The related series x^(n^2) * C(x^n)^n = (1 - sqrt(1 - 4*x^n))^n/2^n begin:
n=1: x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + ...;
n=2: x^4 + 2*x^6 + 5*x^8 + 14*x^10 + 42*x^12 + ...;
n=3: x^9 + 3*x^12 + 9*x^15 + 28*x^18 + 90*x^21 + ...;
n=4: x^16 + 4*x^20 + 14*x^24 + 48*x^28 + 165*x^32 + ...;
n=5: x^25 + 5*x^30 + 20*x^35 + 75*x^40 + 275*x^45 + ...;
n=6: x^36 + 6*x^42 + 27*x^48 + 110*x^54 + 429*x^60 + ...;
...
SPECIFIC VALUES.
A(1/4) = Sum_{n>=0} (2^(n-1) - sqrt(4^(n-1) - 1))^n / 2^(n^2) = 1.504491300666... = 1 + 1/2 + (2 - sqrt(3))^2/2^4 + (4 - sqrt(15))^3/2^9 + (8 - sqrt(63))^4/2^16 + (16 - sqrt(255))^5/2^25 + (32 - sqrt(1023))^6/2^36 + (64 - sqrt(4095))^7/2^49 + ...
A(-1/4) = Sum_{n>=0} (2^(n-1) - sqrt(4^(n-1) + 1))^n / 2^(n^2) = 0.79637258079... = 1 + (1 - sqrt(2))/2 + (2 - sqrt(5))^2/2^4 + (4 - sqrt(17))^3/2^9 + (8 - sqrt(65))^4/2^16 + (16 - sqrt(257))^5/2^25 + (32 - sqrt(1025))^6/2^36 + ...
		

Crossrefs

Cf. A000108.

Programs

  • PARI
    {a(n) = my(A); A = sum(m=0,sqrtint(n+1), (1 - sqrt(1 - 4*x^m +x*O(x^n) ))^m / 2^m); polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: Sum{n>=0} (1 - sqrt(1 - 4*x^n))^n / 2^n.
G.f.: Sum{n>=0} Series_Reversion( x*(1 - x^n)^(1/n) )^(n^2).