cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299044 G.f. Sum_{n>=0} Series_Reversion( x/(1+x)^n )^n.

Original entry on oeis.org

1, 1, 2, 6, 25, 129, 784, 5472, 42993, 374190, 3564176, 36808647, 409067204, 4861490200, 61457674398, 822732344816, 11618029697489, 172476856415121, 2683881876383377, 43660291710726058, 740764460615030663, 13080604188895285878, 239939914279952537597, 4564083798329838120034, 89886989241387131773525, 1830230258908641519168564
Offset: 0

Views

Author

Paul D. Hanna, Feb 18 2018

Keywords

Comments

Antidiagonal sums of square table A299427.

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 129*x^5 + 784*x^6 + 5472*x^7 + 42993*x^8 + 374190*x^9 + 3564176*x^10 + ...
such that
A(x) = 1 + x*R(x,1) + x^2*R(x,2)^4 + x^3*R(x,3)^9 + x^4*R(x,4)^16 + x^5*R(x,5)^25 + x^6*R(x,6)^36 + ...
where series R(x,n) = 1 + x*R(x,n)^n begin:
R(x,1) = 1 + x + x^2 + x^3 + x^4 + x^5 + ...
R(x,2) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ...
R(x,3) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ...
R(x,4) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + ...
R(x,5) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + ...
R(x,6) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + ...
...
and series R(x,n)^(n^2) begin:
R(x,1) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + ...
R(x,2)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + 572*x^5  + ...
R(x,3)^9 = 1 + 9*x + 63*x^2 + 408*x^3 + 2565*x^4 + 15939*x^5 + ...
R(x,4)^16 = 1 + 16*x + 184*x^2 + 1872*x^3 + 17980*x^4 + 167552*x^5 + ...
R(x,5)^25 = 1 + 25*x + 425*x^2 + 6175*x^3 + 82775*x^4 + 1059380*x^5 + ...
R(x,6)^36 = 1 + 36*x + 846*x^2 + 16536*x^3 + 292581*x^4 + 4874688*x^5 + ...
...
demonstrating that A(x) = Sum_{n>=1} x^n * R(x,n)^(n^2).
		

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_] := Sum[Binomial[n*(n-k), k]*(n-k)/n, {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 23 2018 *)
  • PARI
    {a(n) = my(A,Ox=x^2*O(x^n)); A = sum(m=0,n+1, serreverse( x/(1+x +Ox)^m +Ox)^m ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0,1, sum(k=0,n, binomial(n*(n-k),k) * (n-k)/n ) )}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n equals the following expressions.
(1) A(x) = Sum_{n>=0} Series_Reversion( x/(1+x)^n )^n.
(2) A(x) = Sum_{n>=1} x^n * R(x,n)^(n^2), where
(2.a) R(x,n) = 1 + x*R(x,n)^n,
(2.b) R(x,n)^n = Series_Reversion( x/(1+x)^n ) / x,
(2.c) R(x,n)^n = Sum_{k>=0} C(n*(k+1), k)/(k+1) * x^k;
(2.d) R(x,n)^(n^2) = Sum_{k>=0} C(n*(n+k), k) * n/(n+k) * x^k.
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} binomial(n*(n-k), k) * (n-k)/n.
a(n)^(1/n) ~ n^(n/w) * (n+1-w)^(1 - (n+1)/w) * (w-1)^(1/w - 1), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Feb 19 2018