cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299106 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)).

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 41, 88, 189, 405, 869, 1864, 3998, 8575, 18392, 39448, 84610, 181475, 389235, 834848, 1790617, 3840591, 8237462, 17668057, 37895195, 81279216, 174331098, 373912708, 801983781, 1720128713, 3689404772, 7913191304, 16972547194, 36403436640
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2018

Keywords

Crossrefs

Antidiagonal sums of A286335.

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[1/(1 - x Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 33; CoefficientList[Series[1/(1 - x/QPochhammer[x, x^2]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A000009(k-1)*a(n-k).
a(n) ~ c * d^n, where d = 2.14484226934608840026733598736202689102117985119507858808036465196716739... is the root of the equation QPochhammer(1/d, 1/d^2)*d = 1 and c = 0.4217892515709863296976217395517853732959704351198250451894928058439... = 2/(2+Derivative[0, 1][QPochhammer][-1, 1/d]/d^2). - Vaclav Kotesovec, Feb 03 2018, updated Mar 31 2018