cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299108 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)/(1 - x^k)).

Original entry on oeis.org

1, 1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16805, 49071, 143289, 418411, 1221781, 3567663, 10417761, 30420401, 88829145, 259385701, 757419669, 2211704625, 6458291945, 18858546645, 55067931981, 160801210705, 469547855419, 1371104033121, 4003694720243
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2018

Keywords

Crossrefs

Antidiagonal sums of A288515.

Programs

  • Maple
    S:= series(1/(1-x/JacobiTheta4(0,x)),x,51):
    seq(coeff(S,x,n),n=0..50); # Robert Israel, Feb 02 2018
  • Mathematica
    nmax = 28; CoefficientList[Series[1/(1 - x Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 28; CoefficientList[Series[1/(1 - x/EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
    nmax = 28; CoefficientList[Series[1/(1 - x QPochhammer[-x, x]/QPochhammer[x, x]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k)/(1 - x^k)).
G.f.: 1/(1 - x/theta_4(x)), where theta_4() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A015128(k-1)*a(n-k).
a(n) ~ c * d^n, where d = 2.9200517419026569743994130834319365190407162724411912701937027582419975778... is the root of the equation EllipticTheta(4, 0, 1/d) * d = 1 and c = 0.372842695601022868809531452599286285949969156503576039087883242107... = 2*Log[r]*QPochhammer[r] / (2*QPochhammer[r] * (Log[1 - r] + Log[r] + QPolyGamma[1, r]) + r*Log[r] * (r * Derivative[0, 1][QPochhammer][-1, r] - 2*Derivative[0, 1][QPochhammer][r, r])), where r = 1/d. Equivalently, c = EllipticTheta[4, 0, r]^2 / (r *(EllipticTheta[4, 0, r] - r * Derivative[0, 0, 1][EllipticTheta][4, 0, r])). - Vaclav Kotesovec, Feb 03 2018, updated Mar 31 2018