A299111 Maximum value of the cyclic convolution of first n primes with themselves.
4, 13, 37, 82, 183, 344, 601, 918, 1355, 2048, 2873, 3978, 5455, 7112, 9105, 11530, 14391, 17504, 21353, 25686, 30311, 35536, 41421, 48010, 55911, 64632, 73869, 83766, 94151, 105420, 118569, 132566, 148247, 164564, 182617, 201770, 222975, 245532, 269253
Offset: 1
Keywords
Examples
For n = 4 the four possible cyclic convolution of first four primes with themselves are: (2,3,5,7).(7,5,3,2) = 2*7 + 3*5 + 5*3 + 7*2 = 14 + 15 + 15 + 14 = 58, (2,3,5,7).(2,7,5,3) = 2*2 + 3*7 + 5*5 + 7*3 = 4 + 21 + 25 + 21 = 71, (2,3,5,7).(3,2,7,5) = 2*3 + 3*2 + 5*7 + 7*5 = 6 + 6 + 35 + 35 = 82, (2,3,5,7).(5,3,2,7) = 2*5 + 3*3 + 5*2 + 7*7 = 10 + 9 + 10 + 49 = 78, then a(4)=82 because 82 is the maximum among the four values.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
f:= proc(n) local V,R,i; V:= Vector(n, ithprime); R:= ArrayTools:-FlipDimension(V,1)^%T; max(seq(ArrayTools:-CircularShift(R,i) . V, i=0..n-1)) end proc: map(f, [$1..100]); # Robert Israel, Feb 07 2018
-
Mathematica
a[n_]:=Prime[Range[n]]; Table[Max@Table[a[n].RotateRight[Reverse[a[n]], j], {j, 0, n - 1}], {n,1,36}]
-
PARI
a(n) = my(vp=primes(n)); vecmax(vector(n, k, sum(i=1, n, vp[n-i+1]*vp[1+(i+k)%n]))); \\ Michel Marcus, Feb 07 2018; Jun 15 2022
Formula
a(n) = Max_{k=1..n} Sum_{i=1..n} prime(n-i+1)*prime(1+(i+k) mod n).
a(n) >= A014342(n). Does the ratio a(n)/A014342(n) have a limit as n -> infinity? - Robert Israel, Feb 07 2018