A299151 Numerators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).
1, 1, 2, 7, 8, 14, 32, 121, 126, 248, 512, 1003, 2048, 4064, 8176, 130539, 32768, 65382, 131072, 261868, 524224, 1048064, 2097152, 4193131, 8388576, 16775168, 33554180, 67104688, 134217728, 268426672, 536870912, 8589802359, 2147482624, 4294934528, 8589934336, 17179801257, 34359738368, 68719345664, 137438949376, 274877643724, 549755813888
Offset: 1
Examples
Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nn=50; sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}]; Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
-
PARI
A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(d
A299151perA299152(d)*A299151perA299152(n/d),0)))/2); A299151(n) = numerator(A299151perA299152(n));
Extensions
More terms from Antti Karttunen, Jul 29 2018
Comments