A299238 a(n) = the index m satisfying t(m) = 5 - t(n), where t(n) is the n-th {2,3}-power tower; see Comments.
2, 1, 7, 5, 4, 16, 3, 15, 12, 11, 10, 9, 34, 33, 8, 6, 32, 31, 26, 25, 24, 23, 22, 21, 20, 19, 70, 69, 68, 67, 18, 17, 14, 13, 66, 65, 64, 63, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 142, 141, 140, 139, 138, 137, 136, 135, 38, 37, 36
Offset: 1
Examples
t(12) = (3,3,2) and t(9) = (2,2,3) = 5 - (3,3,2), so that a(12) = 9. (Note: 5 - (x(1), x(2), ..., x(k)) means (5-x(1), 5-x(2), ..., 5-x(k))).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A299229.
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 12, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] Flatten[Table[Select[Range[1000], t[#] == 5 - t[n] &], {n, 1, 150}]] (* A299238 *)
Comments