A299241 Ranks of {2,3}-power towers in which #2's = #3's; see Comments.
4, 5, 18, 20, 22, 23, 25, 31, 62, 74, 76, 77, 82, 84, 85, 90, 92, 93, 96, 97, 99, 104, 105, 107, 128, 129, 131, 135, 238, 246, 250, 252, 253, 294, 298, 300, 301, 306, 308, 309, 312, 313, 315, 326, 330, 332, 333, 338, 340, 341, 344, 345, 347, 358, 362, 364
Offset: 1
Examples
The first six terms are the ranks of these towers: t(4) = (2,3), t(5) = (3,2), t(18) = (3,3,2,2), t(20) = (3,2,2,3), t(22) = (3,2,3,2), t(23) = (2,3,2,3).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 12, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] Select[Range[1000], Count[t[#], 2] > Count[t[#], 3] &]; (* A299240 *) Select[Range[1000], Count[t[#], 2] == Count[t[#], 3] &]; (* this sequence *) Select[Range[1000], Count[t[#], 2] < Count[t[#], 3] &]; (* A299242 *)
Comments