A299250 Numbers congruent to {9, 11, 21, 29} mod 30.
9, 11, 21, 29, 39, 41, 51, 59, 69, 71, 81, 89, 99, 101, 111, 119, 129, 131, 141, 149, 159, 161, 171, 179, 189, 191, 201, 209, 219, 221, 231, 239, 249, 251, 261, 269, 279, 281, 291, 299, 309, 311, 321, 329, 339, 341, 351, 359, 369, 371, 381, 389, 399, 401, 411
Offset: 1
Examples
39 belongs to this sequence and d = 39*2^13 + 1 is a divisor of F(11) = 2^(2^11) + 1, so 10 | (39 + (F(11)/d - 1)/2^13).
Links
- Wikipedia, Fermat number
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n: n in [0..411] | n mod 30 in {9, 11, 21, 29}];
-
Mathematica
LinearRecurrence[{1, 0, 0, 1, -1}, {9, 11, 21, 29, 39}, 60] CoefficientList[ Series[(9 + 2x + 10x^2 + 8x^3 + x^4)/((-1 + x)^2 (1 + x + x^2 + x^3)), {x, 0, 54}], x] (* Robert G. Wilson v, Feb 08 2018 *)
-
PARI
Vec(x*(9 + 2*x + 10*x^2 + 8*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))
Formula
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = a(n-4) + 30.
G.f.: x*(9 + 2*x + 10*x^2 + 8*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2).
Comments