cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299257 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.12.12 2D tiling (cf. A250122).

Original entry on oeis.org

1, 5, 12, 22, 36, 56, 82, 111, 144, 183, 226, 272, 324, 382, 442, 505, 576, 653, 730, 810, 900, 996, 1090, 1187, 1296, 1411, 1522, 1636, 1764, 1898, 2026, 2157, 2304, 2457, 2602, 2750, 2916, 3088, 3250, 3415, 3600, 3791, 3970, 4152, 4356, 4566, 4762, 4961, 5184, 5413, 5626, 5842, 6084, 6332
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #19.

Crossrefs

Cf. A250122.
Partial sums: A299263.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {1, 5, 12, 22, 36, 56, 82, 111, 144, 183}, 60] (* Paolo Xausa, Jun 20 2024 *)
  • PARI
    Vec((1 + x)*(1 + x + x^2 + 3*x^3 - x^4 + 5*x^5 - 3*x^6 + 4*x^7 - 2*x^8) / ((1 - x)^3*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

G.f.: (2*x^8 - 4*x^7 + 3*x^6 - 5*x^5 + x^4 - 3*x^3 - x^2 - x - 1)*(x + 1) / ((x - 1)^3*(x^2 + 1)^2).
From Colin Barker, Feb 09 2018: (Start)
a(n) = (4 - (2+8*i)*(-i)^n - (2-8*i)*i^n + i*((-i)^n-i^n)*n + 18*n^2) / 8 for n>2, where i=sqrt(-1).
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>9. (End)
a(n) = 1/2 + 9*n^2/4 + (-1)^floor(n/2)*(A027656(n-1)/2 - A010699(n)/4). - R. J. Mathar, Feb 12 2021