cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299277 Coordination sequence for "pcu-i" 3D uniform tiling.

Original entry on oeis.org

1, 5, 13, 26, 46, 73, 104, 140, 187, 240, 292, 352, 417, 482, 567, 660, 740, 838, 944, 1031, 1150, 1290, 1399, 1531, 1677, 1787, 1944, 2130, 2261, 2431, 2624, 2750, 2941, 3180, 3334, 3538, 3777, 3920, 4149, 4440, 4610, 4852, 5144, 5297, 5560, 5910, 6097, 6373, 6717, 6881, 7182, 7590, 7787, 8101, 8504, 8672
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #20.

Crossrefs

See A299278 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    CoefficientList[Series[(x^16-x^15+x^14-2x^13+2x^12-x^11+4x^10+x^9+9x^8+12x^6-x^5+ 9x^4+4x^2+1)(x+1)^5/((1+x^2)(1-x^3)(1-x^6)^2),{x,0,60}],x] (* or *) LinearRecurrence[{ 2,-4,7,-10,14,-16,18,-18,16,-14,10,-7,4,-2,1},{1,5,13,26,46,73,104,140,187,240,292,352,417,482,567,660,740,838,944,1031},60] (* Harvey P. Dale, Mar 09 2024 *)
  • PARI
    Vec((x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 + x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^60)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 + x^2)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = -a(n-2) + a(n-3) + a(n-5) + 2*a(n-6) + 2*a(n-8) - 2*a(n-9) - 2*a(n-11) - a(n-12) - a(n-14) + a(n-15) + a(n-17) for n>21. - Colin Barker, Feb 14 2018