A299282 Partial sums of A299281.
1, 7, 26, 67, 139, 253, 419, 643, 931, 1295, 1749, 2299, 2947, 3705, 4591, 5611, 6763, 8059, 9521, 11155, 12955, 14933, 17115, 19507, 22099, 24903, 27949, 31243, 34771, 38545, 42599, 46939, 51547, 56435, 61641, 67171, 73003, 79149, 85651, 92515, 99715, 107263, 115205
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-8,12,-14,12,-8,4,-1).
Crossrefs
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
PARI
Vec((1 + x)*(1 + x^2 + x^3)*(1 + 2*x + 3*x^2 + x^4 - 2*x^5 + x^6) / ((1 - x)^4*(1 + x^2)^2) + O(x^70)) \\ Colin Barker, Feb 14 2018
Formula
From Colin Barker, Feb 14 2018: (Start)
G.f.: (1 + x)*(1 + x^2 + x^3)*(1 + 2*x + 3*x^2 + x^4 - 2*x^5 + x^6) / ((1 - x)^4*(1 + x^2)^2).
a(n) = 4*a(n-1) - 8*a(n-2) + 12*a(n-3) - 14*a(n-4) + 12*a(n-5) - 8*a(n-6) + 4*a(n-7) - a(n-8) for n>8. (End)
a(n) = (n*(6*n^2 + 9*n + 11) - 12 + (n - 8)*A056594(n) - (n + 1)*A056594(n+1))/4 for n > 2. - Stefano Spezia, Apr 23 2023