A299284 Partial sums of A299283.
1, 8, 30, 78, 162, 292, 478, 731, 1061, 1478, 1992, 2614, 3354, 4222, 5228, 6383, 7697, 9180, 10842, 12694, 14746, 17008, 19490, 22203, 25157, 28362, 31828, 35566, 39586, 43898, 48512, 53439, 58689, 64272, 70198, 76478, 83122, 90140, 97542, 105339, 113541
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
Crossrefs
Cf. A299283.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Mathematica
LinearRecurrence[{3,-3,1,1,-3,3,-1},{1,8,30,78,162,292,478},50] (* Harvey P. Dale, Mar 30 2024 *)
-
PARI
Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018
Formula
From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)