A299326 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers that start with n 3's, for n >= 1; see Comments.
2, 5, 7, 8, 12, 16, 11, 18, 26, 34, 14, 24, 38, 54, 70, 20, 30, 50, 78, 110, 142, 22, 42, 62, 102, 158, 222, 286, 28, 46, 86, 126, 206, 318, 446, 574, 32, 58, 94, 174, 254, 414, 638, 894, 1150, 36, 66, 118, 190, 350, 510, 830, 1278, 1790, 2302
Offset: 1
Examples
Northwest corner: 2 5 8 11 14 20 22 7 12 18 24 30 42 46 16 26 38 50 62 86 94 34 54 78 102 126 174 190 70 110 158 206 254 350 382
References
- 1
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 500; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 17, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] s = Select[Range[60000], Count[First[Split[t[#]]], 2] == 0 & ]; r[n_] := Select[s, Length[First[Split[t[#]]]] == n &, 12] TableForm[Table[r[n], {n, 1, 10}]] (* this array *) w[n_, k_] := r[n][[k]]; Table[w[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* this sequence *)
Comments