A299327 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers in which the maximal runlength is n; see Comments.
1, 2, 3, 4, 7, 6, 5, 8, 14, 13, 10, 9, 16, 28, 27, 11, 12, 19, 34, 56, 55, 22, 15, 26, 39, 70, 112, 111, 23, 17, 29, 54, 79, 142, 224, 223, 45, 18, 30, 57, 110, 159, 286, 448, 447, 48, 20, 33, 58, 113, 222, 319, 574, 896, 895, 92, 21, 38, 69, 114, 225, 446
Offset: 1
Examples
Northwest corner: 1 2 4 5 10 11 22 23 45 48 3 7 8 9 12 15 17 18 20 21 6 14 16 19 26 29 30 33 38 40 13 28 34 39 54 57 58 69 78 80 27 56 70 79 110 113 114 141 158 160
Crossrefs
Cf. A299229.
Programs
-
Mathematica
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2}; t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3}; t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2}; z = 500; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 15, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] r[n_] := Select[Range[30000], Max[Map[Length, Split[t[#]]]] == n & , 12]; TableForm[Table[r[n], {n, 1, 12}]] (* this array *) w[n_, k_] := r[n][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *)
Comments