cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A299374 Numbers k such that k * 11^k - 1 is prime.

Original entry on oeis.org

2, 8, 252, 1184, 1308
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(6) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), this sequence (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*11^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*11^n-1] &]
  • PARI
    for(n=1, 10000, if(ispseudoprime(n*11^n-1), print1(n", ")))
    

A299375 Numbers k such that k * 12^k - 1 is prime.

Original entry on oeis.org

1, 6, 43, 175, 821, 910, 1157, 13748, 27032, 71761, 229918
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(12) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), this sequence (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*12^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*12^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*12^n-1), print1(n", ")))
    

A299377 Numbers k such that k * 14^k - 1 is prime.

Original entry on oeis.org

1, 3, 7, 98, 104, 128, 180, 834, 1633, 8000, 28538, 46605, 131941, 147684, 433734
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(16) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), this sequence (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*14^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*14^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*14^n-1), print1(n", ")))
    

A299378 Numbers k such that k * 15^k - 1 is prime.

Original entry on oeis.org

2, 10, 14, 2312, 16718, 26906, 27512, 41260, 45432, 162454, 217606
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(12) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), this sequence (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*15^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*15^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*15^n-1), print1(n", ")))
    

A299379 Numbers k such that k * 16^k - 1 is prime.

Original entry on oeis.org

167, 189, 639
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(4) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), this sequence (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*16^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*16^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*16^n-1), print1(n", ")))
    

A299380 Numbers k such that k * 17^k - 1 is prime.

Original entry on oeis.org

2, 18, 20, 38, 68, 3122, 3488, 39500
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(9) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), this sequence (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*17^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*17^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*17^n-1), print1(n", ")))
    

A299381 Numbers k such that k * 18^k - 1 is prime.

Original entry on oeis.org

1, 2, 6, 8, 10, 28, 30, 39, 45, 112, 348, 380, 458, 585, 17559, 38751, 43346, 46984, 92711
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(20) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), this sequence (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*18^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*18^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*18^n-1), print1(n", ")))
    

A299382 Numbers k such that k * 19^k - 1 is prime.

Original entry on oeis.org

12, 410, 33890, 91850, 146478, 189620, 280524
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(8) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), this sequence (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*19^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*19^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*19^n-1), print1(n", ")))
    

A299383 Numbers k such that k * 20^k - 1 is prime.

Original entry on oeis.org

1, 18, 44, 60, 80, 123, 429, 1166, 2065, 8774, 35340, 42968, 50312, 210129
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(15) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), this sequence (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*20^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*20^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*20^n-1), print1(n", ")))
    
Showing 1-9 of 9 results.