A299400 a(n) = concatenation of all (i, e_i) with e_i > 0, when n = Product_{i >= 1} prime(i)^e_i.
0, 11, 21, 12, 31, 1121, 41, 13, 22, 1131, 51, 1221, 61, 1141, 2131, 14, 71, 1122, 81, 1231, 2141, 1151, 91, 1321, 32, 1161, 23, 1241, 101, 112131, 111, 15, 2151, 1171, 3141, 1222, 121, 1181, 2161, 1331, 131, 112141, 141, 1251, 2231, 1191, 151, 1421, 42, 1132, 2171
Offset: 1
Examples
2 = prime(1)^1 => a(2) = 11, 3 = prime(2)^1 => a(3) = 21, 4 = prime(1)^2 => a(4) = 12, 5 = prime(3)^1 => a(5) = 31, 6 = prime(1)^1*prime(2)^1 => a(1) = 1121, 7 = prime(3)^1 => a(7) = 41, 8 = prime(1)^3 => a(8) = 13, and so on.
Crossrefs
Cf. A067599 (decimal encoding of prime factorization).
Programs
-
Maple
a:= n-> `if`(n=1, 0, parse(cat(seq([numtheory[pi] (i[1]), i[2]][], i=sort(ifactors(n)[2]))))): seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2018
-
Mathematica
Array[FromDigits@ Flatten@ Map[{PrimePi@ #1, #2} & @@ # &, FactorInteger@ #] &, 51] (* Michael De Vlieger, Mar 16 2018 *)
-
PARI
A299400(n)=if(n=factor(n),eval(concat(apply(f->Str(primepi(f[1]),f[2]), Col(n)~))))
Comments