cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299443 Expansion of (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2).

Original entry on oeis.org

1, 3, 10, 35, 127, 474, 1807, 6999, 27436, 108541, 432493, 1733174, 6977777, 28200413, 114338320, 464857475, 1894420045, 7736238420, 31649963275, 129693294945, 532216500532, 2186868151211, 8996351889535, 37048736568870, 152722557174139, 630116066189691
Offset: 0

Views

Author

Peter Luschny, Feb 10 2018

Keywords

Examples

			From the first formula follows that a(n) = p_{n}(1) of the polynomials p_{n}(x):
[0]    1
[1]    3
[2]    9 +      x
[3]   27 +    8*x
[4]   81 +   45*x +     x^2
[5]  243 +  216*x +  15*x^2
[6]  729 +  945*x + 132*x^2 +    x^3
[7] 2187 + 3888*x + 900*x^2 + 24*x^3
...
		

Crossrefs

Cf. A299444.

Programs

  • Maple
    ogf := (x^4 + 2*x^3 + 7*x^2 - 6*x + 1)^(-1/2):
    series(ogf, x, 27): seq(coeff(%,x,n),n=0..25);
  • Mathematica
    CoefficientList[ Series[1/Sqrt[x^4 + 2 x^3 + 7 x^2 - 6 x + 1], {x, 0, 25}], x] (* Robert G. Wilson v, Feb 11 2018 *)

Formula

a(n) = Sum_{k=0..n} 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2).
D-finite with recurrence: a(n) = ((2-n)*a(n-4)+(3-2*n)*a(n-3)+(7-7*n)*a(n-2)+(6*n-3)*a(n-1))/n for n >= 4.