A299444 Triangle read by rows, T(n, k) = 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2) for n >= 0 and 0 <= k <= n.
1, 1, 2, 1, 5, 4, 1, 10, 16, 8, 1, 17, 49, 44, 16, 1, 26, 121, 182, 112, 32, 1, 37, 256, 593, 584, 272, 64, 1, 50, 484, 1616, 2368, 1712, 640, 128, 1, 65, 841, 3848, 7921, 8312, 4720, 1472, 256, 1, 82, 1369, 8254, 22841, 33002, 26704, 12448, 3328, 512
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 2 [2] 1, 5, 4 [3] 1, 10, 16, 8 [4] 1, 17, 49, 44, 16 [5] 1, 26, 121, 182, 112, 32 [6] 1, 37, 256, 593, 584, 272, 64 [7] 1, 50, 484, 1616, 2368, 1712, 640, 128 [8] 1, 65, 841, 3848, 7921, 8312, 4720, 1472, 256 [9] 1, 82, 1369, 8254, 22841, 33002, 26704, 12448, 3328, 512
Crossrefs
Cf. A299443 (row sums).
Programs
-
Maple
T := (n, k) -> 2^k*binomial(n, k)*hypergeom([-k, k - n, k - n], [1, -n], 1/2): seq(seq(simplify(T(n,k)), k=0..n), n=0..9);