A299467 Least even integer k such that numerator(B_k) == 0 (mod 67^n).
58, 3292, 153640, 12597148, 846312184, 52715297638, 320040068824, 370475739904372, 23170872799129498, 532379740455157312, 111861518490094080436, 1314934469494256636776, 291496130251698265225984, 7852328398132458266800348, 1925603427201316655808983674
Offset: 1
Keywords
Examples
a(3) = 153640 because the numerator of B_153640 is divisible by 67^3 and there is no even integer less than 153640 for which this is the case.
Links
- Bernd C. Kellner, Table of n, a(n) for n = 1..100
- Bernd C. Kellner, The Bernoulli Number Page
- Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp., 76 (2007), 405-441.
- Wikipedia, Irregular pairs
Programs
-
Mathematica
p = 67; l = 58; LD = {49, 34, 42, 42, 39, 3, 62, 57, 19, 62, 10, 36, 14, 53, 57, 16, 60, 22, 41, 21, 25, 0, 56, 21, 24, 52, 33, 28, 51, 34, 60, 8, 47, 39, 42, 33, 14, 66, 50, 48, 45, 28, 61, 50, 27, 8, 30, 59, 32, 15, 3, 1, 54, 12, 30, 20, 14, 12, 10, 49, 33, 49, 54, 13, 26, 42, 8, 58, 12, 63, 19, 16, 48, 15, 2, 13, 1, 23, 2, 44, 64, 25, 40, 0, 16, 58, 44, 31, 62, 47, 61, 46, 9, 2, 50, 1, 62, 34, 31}; CalcIndex[L_, p_, l_, n_] := l + (p - 1) Sum[L[[i + 1]] p^i , {i, 0, n - 2}]; Table[CalcIndex[LD, p, l, n], {n, 1, Length[LD] + 1}] // TableForm
Formula
Numerator(B_{a(n)}) == 0 (mod 67^n).
Comments