A299482 Numbers m such that in the diagram of the symmetric representation of sigma(k) described in A237593 there is no Dyck path that contains the point (m,m), where both k and m are positive integers.
4, 8, 10, 14, 16, 19, 21, 24, 27, 29, 31, 33, 37, 39, 41, 43, 46, 48, 50, 51, 53, 55, 58, 60, 62, 64, 66, 69, 72, 74, 76, 78, 80, 82, 83, 84, 87, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 114, 116, 119, 121, 123, 124, 125, 127, 129, 131, 133, 135, 138, 141, 143, 145, 147, 149, 151, 153
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a240542[n_] := Sum[(-1)^(k+1)*Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}] a299482[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; Flatten[Position[t, 0]]] a299482[153] (* Hartmut F. W. Hoft, Aug 07 2020 *)
Comments