A299492 Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + b(n-3), where a(0) = 2, a(1) = 4, a(2) = 5; see Comments.
2, 4, 5, 10, 16, 21, 24, 28, 32, 36, 39, 42, 46, 50, 54, 57, 61, 65, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 119, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 169, 173, 177, 181, 185, 189, 193, 197, 201, 204, 208, 212, 216, 220, 224
Offset: 0
Links
- J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 2; a[1] = 4; a[2] = 5; b[0] = 1; b[1] = 3; b[2] = 6; a[n_] := a[n] = b[n - 1] + b[n - 2] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}] (* A299492 *) Table[b[n], {n, 0, 100}] (* A299493 *)
Comments