A299498 Integers primitively represented by cyclotomic binary forms.
3, 5, 7, 10, 11, 13, 17, 19, 21, 25, 26, 29, 31, 34, 37, 39, 41, 43, 49, 50, 53, 55, 57, 58, 61, 65, 67, 73, 74, 79, 82, 85, 89, 91, 93, 97, 101, 103, 106, 109, 111, 113, 121, 122, 125, 127, 129, 130, 133, 137, 139, 145, 146, 147, 149, 151, 157, 163, 169, 170
Offset: 1
Keywords
Links
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Programs
-
Julia
using Nemo function isA299498(n) isPrimeTo(n, k) = gcd(ZZ(n), ZZ(k)) == ZZ(1) R, x = PolynomialRing(ZZ, "x") K = Int(floor(5.383*log(n)^1.161)) # Bounds from M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt N = QQ(n) for k in 3:K e = Int(eulerphi(ZZ(k))) c = cyclotomic(k, x) for m in 1:M, j in m+1:M if isPrimeTo(m, j) N == m^e*subst(c, QQ(j,m)) && return true end end end return false end A299498list(upto) = [n for n in 1:upto if isA299498(n)] print(A299498list(170))
Comments