cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299500 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^(n-k)*binomial(n,k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 7, 3, 1, 5, 16, 15, 4, 1, 8, 38, 46, 26, 5, 1, 13, 82, 141, 100, 40, 6, 1, 21, 173, 381, 375, 185, 57, 7, 1, 34, 352, 983, 1216, 820, 308, 77, 8, 1, 55, 701, 2400, 3704, 3101, 1575, 476, 100, 9, 1, 89, 1368, 5646, 10536, 10885, 6804, 2758, 696, 126, 10, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2018

Keywords

Examples

			The partial polynomials p_{n,k}(x) start:
[0] 1
[1] x,   1
[2] x^2, 2*x+1,        1
[3] x^3, 3*x^2+4*x,    3*x+2,             1
[4] x^4, 4*x^3+9*x^2,  6*x^2+12*x+1,      4*x+3,         1
[5] x^5, 5*x^4+16*x^3, 10*x^3+36*x^2+9*x, 10*x^2+24*x+3, 5*x+4, 1
.
The polynomials P_{n}(x) start:
[0]  1
[1]  1 +    x
[2]  2 +  2*x +    x^2
[3]  3 +  7*x +  3*x^2 +    x^3
[4]  5 + 16*x + 15*x^2 +  4*x^3 +   x^4
[5]  8 + 38*x + 46*x^2 + 26*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0]  1
[1]  1,   1
[2]  2,   2,    1
[3]  3,   7,    3,    1
[4]  5,  16,   15,    4,    1
[5]  8,  38,   46,   26,    5,    1
[6] 13,  82,  141,  100,   40,    6,   1
[7] 21, 173,  381,  375,  185,   57,   7,   1
[8] 34, 352,  983, 1216,  820,  308,  77,   8, 1
[9] 55, 701, 2400, 3704, 3101, 1575, 476, 100, 9, 1'
.
The square array P_{n}(k) near k=0:
......  [k=-2] 1, -1,  2, -7,  17,  -44,  125,  -345,    958,   -2707, ...
A182883 [k=-1] 1,  0,  1, -2,   1,   -6,    7,   -12,     31,     -40, ...
A000045 [k=0]  1,  1,  2,  3,   5,    8,   13,    21,     34,      55, ...
A108626 [k=1]  1,  2,  5, 14,  41,  124,  383,  1200,   3799,   12122, ...
A299501 [k=2]  1,  3, 10, 37, 145,  588, 2437, 10251,  43582,  186785, ...
......  [k=3]  1,  4, 17, 78, 377, 1886, 9655, 50220, 264223, 1402108, ...
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
    PrintPoly := p -> print(sort(expand(p),x,ascending)):
    T := (n,k) -> x^(n-k)*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x):
    P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]:
    seq(CoeffList(p), p in P); # seq(PrintPoly(p), p in P);
    R := proc(n,k) option remember; # Recurrence
    if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+4*k+2][n+1] fi; ((2-n)*R(n-4,k)-
    (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end:
    for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od;

Formula

Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A299502(n).
P_{n}(-1) = A182883(n). P_{n}(0) = A000045(n+1).
P_{n}(1) = A108626(n). P_{n}(2) = A299501(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 - 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)-(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+4*k+2.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).