cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A299499 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 11, 16, 9, 4, 1, 26, 44, 34, 14, 5, 1, 63, 122, 111, 60, 20, 6, 1, 153, 341, 351, 225, 95, 27, 7, 1, 376, 940, 1103, 796, 400, 140, 35, 8, 1, 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1, 2317, 7064, 10224, 9304, 5915, 2772, 994, 264, 54, 10, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2018

Keywords

Examples

			The partial polynomials p_{n,k}(x) start:
[0] 1
[1] 1, x
[2] 1, 2*x+ 1,    x^2
[3] 1, 3*x+ 4,  3*x^2+ 2*x,      x^3
[4] 1, 4*x+ 9,  6*x^2+12*x+1,  4*x^3+ 3*x^2,       x^4
[5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5
.
The polynomials P_{n}(x) start:
[0]   1
[1]   1 +    x
[2]   2 +  2*x +    x^2
[3]   5 +  5*x +  3*x^2 +    x^3
[4]  11 + 16*x +  9*x^2 +  4*x^3 +   x^4
[5]  26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0]   1
[1]   1,    1
[2]   2,    2,    1
[3]   5,    5,    3,    1
[4]  11,   16,    9,    4,    1
[5]  26,   44,   34,   14,    5,   1
[6]  63,  122,  111,   60,   20,   6,   1
[7] 153,  341,  351,  225,   95,  27,   7,  1
[8] 376,  940, 1103,  796,  400, 140,  35,  8, 1
[9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1
.
The square array P_{n}(k) near k=0:
......  [k=-2] 1, -1,  2, -1,  -1,   10,  -25,    51,    -68,     41, ...
A182883 [k=-1] 1,  0,  1,  2,   1,    6,    7,    12,     31,     40, ...
A051286 [k=0]  1,  1,  2,  5,  11,   26,   63,   153,    376,    931, ...
A108626 [k=1]  1,  2,  5, 14,  41,  124,  383,  1200,   3799,  12122, ...
A299443 [k=2]  1,  3, 10, 35, 127,  474, 1807,  6999,  27436, 108541, ...
......  [k=3]  1,  4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ...
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
    PrintPoly := p -> print(sort(expand(p),x,ascending)):
    T := (n,k) -> x^k*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x):
    P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]:
    seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P);
    R := proc(n,k) option remember; # Recurrence
    if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4,k)+
    (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end:
    for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od;
  • Mathematica
    nmax = 10;
    p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x];
    p[n_, x_] := Sum[p[n, k, x], {k, 0, n}];
    Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Feb 26 2018 *)

Formula

Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A298611(n).
P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n).
P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).

A299502 Expansion of (1 - 6*x + x^2 + 8*x^3 + 16*x^4)^(-1/2).

Original entry on oeis.org

1, 3, 13, 59, 277, 1347, 6685, 33675, 171493, 880531, 4550125, 23633627, 123272117, 645247715, 3387538621, 17830213931, 94058445445, 497152260915, 2632288649869, 13958805204603, 74124967884373, 394115410904195, 2097849420888925, 11178238250228427
Offset: 0

Views

Author

Peter Luschny, Feb 15 2018

Keywords

Comments

See A299500 for a family of related polynomials.

Crossrefs

Programs

  • Maple
    a := n -> add(2^k*binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], 2), k=0..n):
    seq(simplify(a(n)), n=0..28);
  • Mathematica
    CoefficientList[Series[(1 - 6x + x^2 + 8x^3 + 16x^4)^(-1/2), {x, 0, 23}], x]

Formula

a(n) = Sum_{k=0..n} 2^k*binomial(n,k)*hypergeom([-k,k-n,k-n], [1,-n], 2).
D-finite with recurrence: (16*n-32)*a(n-4) + (8*n-12)*a(n-3) + (n-1)*a(n-2) + (3-6*n)*a(n-1) + n*a(n) = 0.

A299501 Expansion of (1 - 6*x + 7*x^2 - 2*x^3 + x^4)^(-1/2).

Original entry on oeis.org

1, 3, 10, 37, 145, 588, 2437, 10251, 43582, 186785, 805585, 3492064, 15200753, 66399763, 290910490, 1277803957, 5625184321, 24811849020, 109631120869, 485153695995, 2149941422590, 9539307910561, 42374000475457, 188421560848512, 838633172823745, 3735857124917763
Offset: 0

Views

Author

Peter Luschny, Feb 15 2018

Keywords

Comments

See A299500 for a family of related polynomials.

Crossrefs

Programs

  • Maple
    a := n -> add(2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/2), k=0..n): seq(simplify(a(n)), n=0..25);
  • Mathematica
    CoefficientList[Series[(1 - 6 x + 7 x^2 - 2 x^3 + x^4 )^(-1/2), {x, 0, 25}], x]

Formula

a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/2).
D-finite with recurrence: (-2+n)*a(-4+n) + (-2*n+3)*a(n-3) + (7*n-7)*a(-2+n) + (-6*n+3)*a(-1+n) + n*a(n) = 0.
A249946(n) = a(n) - 2*a(n-1) + a(n-2) for n >= 2.
Showing 1-3 of 3 results.