A299625 Decimal expansion of e^(2*W(2)) = 4/(W(2))^2, where W is the Lambert W function (or PowerLog); see Comments.
5, 5, 0, 2, 5, 4, 6, 6, 0, 4, 2, 2, 0, 7, 2, 4, 0, 7, 5, 3, 1, 1, 2, 6, 8, 1, 3, 5, 9, 4, 9, 3, 2, 6, 0, 1, 9, 5, 5, 3, 8, 4, 3, 4, 8, 0, 0, 7, 2, 8, 3, 1, 7, 5, 2, 0, 4, 0, 1, 5, 0, 2, 8, 4, 7, 3, 0, 5, 8, 9, 6, 0, 9, 9, 9, 6, 7, 2, 8, 7, 6, 7, 4, 0, 2, 7
Offset: 1
Examples
e^(2*W(2)) = 5.50254660422072407531126813594932...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Lambert W-Function
Programs
-
Mathematica
w[x_] := ProductLog[x]; x = 2; y = 2; N[E^(w[x] + w[y]), 130] (* A299625 *) RealDigits[(2/LambertW[2])^2, 10, 100][[1]] (* G. C. Greubel, Mar 03 2018 *)
-
PARI
(2/lambertw(2))^2 \\ G. C. Greubel, Mar 03 2018
Comments